
UNIVERSITY OF DUISBURG-ESSEN
FACULTY OF ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND APPLIED COGNITIVE SCIENCE

Master’s thesis

FooSH: A Framework for outcome-oriented Smart Homes

Malte Josten
Matriculation number: 3066184
Applied Computer Science (Master)

Distributed Systems Group, Department of Computer Science
Faculty of Engineering

University of Duisburg-Essen

December 1, 2023

First Reviewer: Prof. Dr-Ing. Torben Weis
Second Reviewer: Prof. Dr. Gregor Schiele
Period of time: June 5 2023 - December 4 2023

Abstract

The ubiquity of smart homes, driven by the increasing performance and availability of
IoT devices, brings challenges due to the diverse range of appliances, vendors, protocols,
and interfaces. The main issue lies in users knowing what they want to achieve but
struggling with how to execute it in smart homes that often lack elaborate goal-oriented
support. Thus, we address the existing gap in universally applicable goal-oriented smart
home systems while prioritizing the user-centric goals of comfort and convenience by
developing a Java framework prototype (FooSH) with the emphasis on software qual-
ities. Based on the design choices and its architecture, the prototype allows for its
integration into state-of-the-art smart home systems without interfering with existing
parts while accommodating arbitrary prediction methods. These prediction models help
smart home users to achieve a desired smart home state, only by defining the final goal
and not an explicit way to reach it. A proof of concept demonstrating the deployment
into an existing system and the ease of incorporating new prediction models was con-
structed. Despite some limitations, the framework suggests a successful contribution to
(goal-oriented) smart home research, serving as a promising starting point for further
enhancements in smart home user experience and satisfaction.

iii

Contents

1 Introduction 1

2 System Model 3
2.1 Problem Definition . 5

2.2 Goal . 7

2.3 Research Questions . 7

3 Related Work 11
3.1 Goal-orientated Smart Homes Systems . 11

3.2 REST(ful) web API . 13

3.2.1 Definition . 13

3.2.2 Maturity Models . 15

3.2.3 Differences to other web APIs . 17

4 Background 19
4.1 Software Qualities . 19

4.1.1 ISO/IEC 25010 . 19

4.2 RFC 6902 - JavaScript Object Notation (JSON) Patch 21

4.3 RFC 7807 - Problem Details . 21

5 Solution 23

6 Prototype 27
6.1 Design . 27

6.2 Architecture . 28

6.2.1 Spring . 29

6.2.2 FooSH Architecture Model . 31

6.2.3 Components . 33

6.3 Implementation . 37

6.3.1 REST API . 37

6.3.2 Error Handling . 42

6.3.3 Testing . 43

6.3.4 Developer Guide . 44

6.4 Usage . 45

v

Contents

7 Evaluation 49
7.1 Proof of Concept . 49

7.1.1 Setup . 49
7.1.2 Acquired Data . 53
7.1.3 Prediction Model . 55
7.1.4 Implementation . 59
7.1.5 Validation & Evaluation . 60

7.2 Discussion . 62
7.2.1 Research Questions . 62
7.2.2 Limitations . 68
7.2.3 Comparison to Related Work . 69

8 Conclusion 71
8.1 Future Work . 71

A REST API Endpoints 73

B ISO/IEC 25010 Software Quality Descriptions 81

Bibliography 85

vi

List of Figures

2.1 Smart Home Structure . 4
2.2 Smart Home Interaction . 5

3.1 Sasha’s iterative reasoning cycle to achieve vocally induced goal-oriented
instructions [27] . 12

3.2 API architecture popularity, adapted from [1] 14
3.3 The four levels to reach REST [15][41] . 16
3.4 WS3 Maturity Model [42] . 16

5.1 Assignment of smart devices to different environment variables 23
5.2 Exemplary interaction with FooSH . 26

6.1 C4 Level 1 - Architecture Context Diagram 28
6.2 Spring Web MVC Servlet Engine [49] . 29
6.3 MVC vs. MVCS pattern comparison . 30
6.4 C4 Level 2 - Container Diagram . 31
6.5 High level API application architecture . 32
6.6 C4 Level 3 - Component Model . 33

7.1 Data Collection and Measurement Setup 50
7.2 Measurement Station Circuit Schematic 51
7.3 Measurement Station Setup . 52
7.4 Raw brightness measurement data . 54
7.5 Smoothed, scaled OFF-State data . 55
7.6 OFF-State data with marked intervals . 56
7.7 OFF-State data with approximation functions 59

vii

List of Tables

3.1 Summary of REST, (g)RPC, and SOAP differences and similarities 18

6.1 Overview and description of available FooSH API paths 38
6.2 Overview of restrictions imposed by FooSHJsonPatch 39

7.1 Interval bound values estimation . 57
7.2 Approximation function derivation . 58
7.3 Factors affecting FooSH’s maintainability 66

A.1 List of REST API entpoints for route /api/devices/... 73
A.1 List of REST API entpoints for route /api/devices/... 74
A.2 List of REST API entpoints for route /api/vars/... 75
A.2 List of REST API entpoints for route /api/vars/... 76
A.2 List of REST API entpoints for route /api/vars/... 77
A.2 List of REST API entpoints for route /api/vars/... 78
A.3 List of REST API entpoints for route /api/models/... 79
A.3 List of REST API entpoints for route /api/models/... 80

B.1 Product Quality [53] . 81
B.1 Product Quality [53] . 82
B.1 Product Quality [53] . 83
B.2 Quality in Use [53] . 84

ix

List of Listings

4.1 Example JSON Patch document . 21
4.2 Example Problem Detail JSON document 22

6.1 FooSH HATEOAS Response Excerpt . 41
6.2 Exemplary FooSH Error Response . 43
6.3 HTTP request body to fetch smart devices 46
6.4 HTTP request body to define an environment variable 46
6.5 HTTP request body to link devices to an environment variable 46
6.6 HTTP request body to link environment variable with prediction model . 47
6.7 HTTP request body to execute environment variable value prediction . . 47

7.1 MongoDB Entry . 53

xi

Chapter 1

Introduction

With the performance increase of IoT devices and the improvement of their availability
to the broad public, smart homes are more ubiquitous than ever. However, the variety
of smart home appliances, their various vendors, protocols, and different interfaces pose
a big hurdle, especially for newcomers, by increasing the system’s complexity. Unfor-
tunately, this comes with a straitened user experience as interacting with a potentially
complex smart home system also becomes more challenging, either due to the user’s
technical inexperience or the smart home’s extensive setup, configuration, and opera-
tion. Here, one of the main problems is that “users usually know what they want to
do, but they do not know how to do it” [36, p. 126]. Since modern smart homes only
provide limited support for goal-oriented operations, situations often arise where users
more or less successfully define home automations, scenes, and similar on their own that
only partly satisfy their initial needs. Consequently, the user is the ”smart” thing in
the smart home system that does all the cognitive work [27] - essentially making the
home smart using their own intelligence. Thus, goal-oriented approaches in smart homes
are highly attractive as they fulfill the original intentions of smart homes: comfortabil-
ity and convenience without straining the user’s cognitive abilities. Though numerous
elaborate approaches introduce goal-oriented systems for smart homes, none of them
provides a universally deployable framework. With the wide selection of smart home
ecosystems and the various possibilities for achieving user goals, a framework’s general-
izability is one of the key factors determining its success and usefulness in a goal-oriented
environment.

For this reason, we established three research questions that deal with the challenges of
how to develop a system that can be integrated into (nearly) every existing smart home
system while still being able to use arbitrary goal resolution mechanisms. They also
highlight beneficial steps and assisting measures for developing a sustainable and useful
software solution.

The main contribution of this thesis is the development of an outcome-oriented (goal-
oriented) framework prototype that aims to answer the research questions by providing
the necessary interfaces and features to be universally applicable while also considering
its sustainability, making it a long-lasting, easy-to-maintain, and extendable product.

1

Chapter 1 Introduction

The thesis is structured into eight chapters, with each chapter addressing a specific as-
pect of research, implementation, or evaluation. Chapter 2 highlights the current state
of the art of smart homes and emerging problems, and it defines the goal and relevant
research questions for this work. The following two chapters (Chapter 3 and Chap-
ter 4) present the related work and important background information for the upcoming
chapters. We introduce our approach in Chapter 5 and provide an abstract framework
definition. Chapter 6 explains the prototype’s design process and the architecture, fol-
lowed by implementation details and a short showcase of an exemplary user interaction.
Then, we evaluate the prototype by first discussing a proof of concept in Section 7.1 and
subsequently picking up on the research questions, pointing out the prototype’s limita-
tions and comparing it to similar approaches. Lastly, Chapter 8 concludes the thesis
and presents some ideas for future work.

2

Chapter 2

System Model

For this work, we consider IoT systems, namely smart homes, which, according to Sat-
pathy, can be described as “a home which is smart enough to assist the inhabitants
to live independently and comfortably with the help of technology” and where “all the
mechanical and digital devices are interconnected to form a network, which can commu-
nicate with each other and with the user to create an interactive space” [43, pp. 43-44].
One can therefore say that smart homes aim to improve their users’ quality of life, with
a special emphasis on comfort and convenience [6, 17, 30]. Additionally, a smart home
can be formally described as consisting of:

• A gateway or hub H that acts as the mediator between the user and smart
things by posing as a central point of communication. Popular examples for hubs
are Amazon Alexa1 or Google Nest Hub2.

• A set of smart things D := {d1, . . . , du | u ∈ N} that comprises smart objects
which have some kind of controllable actuator and/or a readable sensor. Thus, a
smart thing d := ({a | a ∈ A ∪ ∅}, {s | s ∈ B ∪ ∅}) has a set of actuators and
sensors respectively.

• A set of actuators A := {a1, . . . , av | v ∈ N} that includes the actuators of all
smart things where the value of av ∈ R indicates the actuator’s state, e.g., a = 60
could be the brightness in percent of the actuator (light unit) of a smart light bulb.

• A set of sensors S := {s1, . . . , sw | w ∈ N} that contains all the sensors currently
present in the smart home system. Similar to an actuator, a sensor sw ∈ R
provides information about its reading. A reading of a thermostat could yield the
value s = 21.3, giving the temperature of, e.g., an underfloor heating installation
in [◦C].

• Some kind of user interface in form of, e.g., a physical device, a graphical user
interface (e.g., mobile app), or a web interface. It can also be part of the hub, as
some models, like Amazon Alexa, can be directly interacted with.

• A user that interacts with the smart home’s user interface and is affected by
changes in and of the smart home state.

1https://www.amazon.com/alexa-smart-home/
2https://store.google.com/us/category/nest_hubs_displays

3

https://www.amazon.com/alexa-smart-home/
https://store.google.com/us/category/nest_hubs_displays

Chapter 2 System Model

• A developer which can, but does not need to, be the same person as the user,
configures the smart home system and is assumed to have technical experience.

Figure 2.1 shows an exemplary smart home structure with a hub and four smart devices
d1−d4. Each device has at least one actuator or sensor and communicates with the hub.
Instead of interacting with the smart devices directly, the user utilizes the UI to pass
down any instructions to the hub, which, in turn, forwards them to the corresponding
devices.

Figure 2.1: Smart Home Structure

Besides the commonly used grouping feature of smart homes, with which one can group
multiple smart devices and control them all at once, there is also another kind of group-
ing or assignment concerning so-called properties. Something like noise, humidity, or
temperature can be seen as a smart home property. They are characterized by the fact
that they cannot (usually) be influenced directly by an interaction with the smart home,
as their changes often arise indirectly as a result of side effects from various devices.
Hence, based on their (side-)effects, smart devices can be additionally assigned or linked
to one or multiple different properties. An air conditioning (AC) unit can be an example
of having an effect on multiple properties: when active, it produces noise; it regulates
the temperature and may also change the air’s humidity.

4

2.1 Problem Definition

2.1 Problem Definition

The presented system model not only comes with the positive sides of smart homes, but
it also brings with it the following yet to solve problems:

Usually, users control devices and actuators manually. Figure 2.2 depicts an exemplary
interaction in a scenario where the user wants to achieve a brightness level of 600lm.
They set the brightness of the two smart things d1 and d2 (e.g., smart light bulbs)
individually, and re-adjust the value of the first instruction, as, after checking the actual
brightness with the sensor reading of s2, a brightness level of 450lm does not achieve the
initial goal.

Figure 2.2: Smart Home Interaction

It might seem to be a good idea to create and use home automations instead. Given
an average smart home, this might not be feasible as the effects of actuators on the
real world are not captured, and other physical and environmental influences are not
considered. If the smart home user manipulates the smart home’s state, e.g., turns on

5

Chapter 2 System Model

a light, the effect on the entire system varies depending on more factors than just the
instruction from the user. The time of the day or weather might play a vital role in the
outcome and system changes. Since the smart home does not know about its physical
surroundings nor does it have a simulation for trying to emulate them, a consistent home
automation result is unlikely and only achievable by trial-and-error or by introducing
further functionalities.

Home automations and the smart home system are very limited in capturing smart de-
vices’ effects concerning the external3 influences on the environment. They cannot really
capture external factors, as this would establish the need for a sophisticated simulation
or physical model. Deploying such a model, in general, is not feasible since most smart
home systems run on embedded or IoT devices, which run on limited resources. And even
if powerful hardware were available, creating a performant, reliable, and user-friendly
model that takes into account all the different smart home properties and their impact
on the smart home and its devices is considered unrealistic [37].

Based on the limitations described in the preceding paragraph, smart home users cannot
rely on any capturing method for external factors and need to configure their smart
home and instructions manually. Unfortunately, it can be challenging and tedious to
create a sustainable automation for, let’s say, reading a book on a sofa. Just setting
the brightness of a smart lamp could suffice for some scenarios (at noon in spring),
but for others (in the late afternoon in autumn) additional actions might be necessary
to reach a consistent level of brightness. Usually, environmental factors, such as the
weather, date, or time are not considered by automations. Thus, manually crafted and
executed instructions, especially without considering other (external) factors, tend to be
inconsistent and, subsequently, lead to unsatisfactory results and poor user experience.

The introduction of properties and the fact that one smart device can have an influence
on multiple properties means that possible conflicts can arise in the course of achieving
specific property values. Since one device can be assigned to multiple properties, e.g.,
temperature and noise, in the case of an AC unit, reaching the different properties’ goal
values includes changing the AC’s state at various times. However, the different changes
in the AC’s state can yield conflicting behaviour. One might define a lower temperature
goal but simultaneously want the room to be quiet. To reach both goals, the system
would likely produce a conflict by trying to (i) use the AC to cool down the room but
also by trying to (ii) not use the AC to keep the noise level low.

Looking at the aforementioned issues, it becomes clear that the central goals of smart
homes, being convenient and ameliorating overall comfort while being in and using a
smart home, suffer greatly. Furthermore, the problems hamper further advances towards
more sophisticated user- and goal-centric smart homes.

3Here, external refers to anything outside the smart home system, like the weather, human behaviour,
or other machines/software.

6

2.2 Goal

2.2 Goal

A (software) system is needed that, based on the input of a desired value for a variable,
determines a corresponding smart home configuration and gives the smart home system
appropriate instructions to achieve the wanted result. For this, it should include mech-
anisms for detecting and capturing environmental influences as well as their effects on
the smart home and methods for determining the resulting necessity of including and
changing the state of additional smart devices. The necessity of changing a device’s state
should be concluded with the help of the determined configuration and the underlying
prediction method. The developer can freely define suitable or necessary factors as selec-
tion/decision criteria. Therefore, the results of determining an appropriate configuration
can vary immensely from one model to another. Possible selection criteria would be, for
example, predetermined user preferences or the reduction of electricity consumption.

It is also substantial to solve or prevent conflicts when trying to achieve multiple property
values concurrently. While ignoring the apparent likelihood of clashes, the user’s needs
stay unsatisfied, and, if not given proper feedback or insights, a user might feel annoyed
or even fooled by the system. Consequently, it can be said that the problem of property
conflicts, if not properly addressed, will severely impact the user experience and render
any benefits or improvements of possible solutions nugatory, however good they may
be.

The software design should be constructed with the aim to minimize user interaction
as much as possible and thereby increase user-friendliness, especially for non-technical
users.

2.3 Research Questions

The overarching goal of this work is to develop a software solution to mitigate the
aforementioned problems and challenges. Designing and implementing such software
requires extensive planning and thoughtful considerations regarding various aspects. For
this reason, the following research questions were developed, intended for aiding the
conceptualization of solutions and assuring that working on it is done based on objective
and scientifically supported processes.

(RQ 1) How to deal with and connect to a wide variety of smart home
systems?
Given the wide range of different smart home systems, like Amazon’s Alexa Smart Home
or Google Home4, determining an appropriate interface to connect to the existing smart
home can be tedious and is not per se generalizable. The presence of multiple smart

4https://home.google.com/welcome/

7

https://home.google.com/welcome/

Chapter 2 System Model

home systems inside a smart home makes this point even more evident. A solution
should include an abstraction that lets the developer and user decide which smart home
to integrate it into and not restrict the pool of compatible smart home systems by
only supporting selected systems. Hence, it is necessary to find a way to generalize the
connection between solution software and smart home in a way that still leaves enough
room for smart home selection, future adjustments, and a holistic view of all smart home
systems.

(RQ 2) How to deal with and allow incorporation of different prediction mod-
els?
From now on, a mechanism that combines the properties of an environment model and
its effects on the smart home system with goal-oriented user interactions is called a Pre-
diction Model. It approximates the system environment on the one hand, and, on the
other hand, it also allows users to define goals that, based on the known approximated
system behaviour, are used to determine a corresponding smart home configuration5 to
achieve said goal. Not every method for the prediction/generation of smart home config-
urations is suitable for every use case. It is unlikely that a given prediction method for,
let’s say, brightness levels is also applicable for generating smart home configurations
regarding humidity levels or temperature. Because there is a variety of different pre-
diction methods, a solution should provide the developer with an interface that allows
the incorporation of arbitrary prediction methods without interfering with other capa-
bilities. With the potential conflicts between multiple prediction models comes another
challenge that must be taken into account when devising a solution.

(RQ 3) Which software qualities are crucial for developing a sustainable
and useful solution? What can be done to accomplish and enforce selected
software qualities?
In this work, we base our understanding of software sustainability on the definition of
Venters et al. [56]. They define software sustainability as the degree that indicates the
software’s ability to be maintained or extended by a developer over time and be used
as long as possible without degrading the developer or user experience. The latter also
introduces the term longevity, for it is tightly coupled with sustainability, contributing
a big part to a software’s overall quality. Hence, it is necessary to find means for the
development of sustainable software and the methods for its evaluation. Besides choosing
an appropriate software architecture and design principles, which are already widely
known and applied, software qualities offer another great opportunity to help during
development as well as provide a form of comparability and means for evaluation.

The system in which the solution software will be deployed, is a user-centric system,
with mostly technically-inexperienced users. Here, the degree to which the solution’s
interfaces are intuitive to work with, the frequency of errors and faults, i.e., the user
experience in general, and the solution’s degree of sustainability determine the usefulness

5A smart home configuration describes the state of all smart devices in the smart home.

8

2.3 Research Questions

of the solution. Developing impractical and inconvenient software misses the main point
of smart homes: their pursuit of improving comfort and convenience.

Therefore, solutions should follow and make use of best practices as well as consider
software qualities to ensure their sustainability and usefulness. This usually improves
the overall quality of the final software product and makes it more appealing for end-
users. However, since there exist diverse definitions of software qualities and views
on their respective relevance, it is necessary to (i) ascertain a fitting software quality
model, (ii) determine relevant qualities, and (iii) find fitting evaluation methods. Using
a software quality model in combination with established quality evaluation methods
should allow for better comparability of the solution software with other approaches.

9

Chapter 3

Related Work

This chapter is divided into two sections. The first part deals with approaches similar
to the solution presented in Chapter 5 that, at least to some extent, solve (parts of) the
preceding problem description. The second part highlights the necessary information for
the REST architecture and a way to evaluate it.

3.1 Goal-orientated Smart Homes Systems

Trying to predict user behavior and their needs is not a new problem researchers are
trying to solve. In 1998, Mozer proposed his system ACHE (adaptive control for home
environments), with the intent to program and adapt itself to the needs of the smart
home’s users [32]. During the adaption, it has two main objectives: (i) predict the in-
habitants’ needs, and (ii) conserve energy/costs as much as possible. To find the optimal
compromise between (i) and (ii), reinforcement learning, based on a dollar cost function
(putting a price tag on the inhabitants’ discomfort and energy usage), and dynamic
programming or models of the environment were used. Ultimately, ACHE should find a
policy, i.e., a sequence of controls, to minimize average costs. For each control domain
(we call it ”environment variable”), like temperature or lighting, a different policy has
to be defined, and based on the type of control domain, the policy would enforce either a
reinforcement learning or environment modeling approach. ACHE was tested in multiple
real-world scenarios where it also considered weather data, like outdoor temperature, to
find a promising policy for the indoor heating of a house. He showed that, at this time,
ACHE outperformed other common policies, encouraging dividing the smart home into
smaller parts (control domains) and not aiming to simulate or predict the entire smart
home system, including external factors.

King et al. published a paper in which they introduced Sasha (smarter smart home
assistant), an LLM (Large Language Model)-based reasoning system, to support voice
assistants in comprehending and extracting the goal of or intent behind a vocally issued
user command [27]. Thereby, it addresses the weaknesses of current voice interfaces to
reliably interpret and act upon commonly ambiguous and colloquial vocal interactions.

11

Chapter 3 Related Work

For this, it uses an iterative approach, shown in Figure 3.1, that first extracts the central
goal of the voice command using an LLM, checks whether the detected goal is reachable
(Clarifying), determines what smart devices and actions are necessary to reach the
said goal (Filtering and Planning), and ultimately presents the user with the generated
actions (Feedback) before executing them (Execution). During the Feedback phase, the
user has the opportunity to modify the actions and influence the reasoning cycle. They
emphasized the automatic selection of relevant smart devices during the Filtering step
since LLMs tend to include irrelevant devices to achieve the goal [27]. Thus, a dataset of
the most popular IFTTT1 automations was used to train the LLM to recognize common
automation commands and the corresponding relevant devices. Sasha was successfully
tested in a real-world scenario within a smart home environment and showed improved
human-perceived quality in comparison to other approaches.

Figure 3.1: Sasha’s iterative reasoning cycle to achieve vocally induced goal-oriented
instructions [27]

Palanca et al. first started working on their goal- and service-oriented architecture for
smart home environments in 2011 and introduced it as the Distributed Goal-Oriented
Computing (DGOC) architecture in one of their latest publications [35, 36]. The archi-
tecture is built around so-called agents that provide some kind of service (e.g., smart or
I/O devices) and plans (execution sequences of said services). Both the available services
and plans are considered when determining the most promising plan to reach a goal. If
no matching plan is found, the framework is able to construct a new one based on the
already existing plans and services. The user inputs a goal with the help of an agent
(e.g., a voice assistant agent), and the goal is assumed to be already extracted from the
user’s interaction by utilizing, for example, natural language processing mechanisms.
Their long-term goal is to create an operating system based on the introduced DGOC
architecture, which, at this point, was not yet done.

1https://ifttt.com/

12

https://ifttt.com/

3.2 REST(ful) web API

Bisicchia et al. proposed a framework using the declarative programming language
Prolog [39] for solving the problem of potential conflicts between multiple user-defined
goals, introduced in Section 2.2 [7]. This framework is deployed as an LPaaS (Language
Programming As A Service [10]), which allows for easy integration into other software
products and ecosystems and deployment on various platforms. For the LPaaS to work,
one first needs to define the smart home, its devices (actuators and sensors), and their
relationships to various propertyTypes (analogous to an environment variable in FooSH)
using Prolog. After properly set up, it can mediate between conflicting goal-oriented user
interactions and/or administrator-specified goals using mediation policies (e.g., find the
average between conflicting states). This mediation process can be divided into the
following steps:

1. Collect the pending user requests that include a propertyType’s goal value,
2. Mediate between the collected requests based on a previously specified mediation

policy and
3. Determine the state of actuators to reach the smart home configuration determined

in step 2.

Lastly, the proposed framework enables switching between and creation of mediation
policies at runtime, which results in high flexibility and an improved user experience.

3.2 REST(ful) web API

Representational State Transfer (REST) is one of the most known and used web API
architectures [42]. The 2021 State of the API Report from Postman2 showed that nearly
95% of survey participants used REST in 2021 (see Figure 3.2). This trend continues to
this day with roughly 85% working with REST in 2023 [2], and it suggests a promising
future for the ongoing usage of and interest in RESTful web APIs.

3.2.1 Definition

REST is an architecture for distributed hypermedia systems (e.g., the World Wide Web)
developed by Roy T. Fielding as part of his dissertation [14]. Fielding saw multiple prob-
lems with creating and evaluating improvements to the Web and its protocols, as they
were growing very fast and there was no method to expand the already deployed Web
architecture [14, pp. 71-75]. For this reason, he introduced six constraints for designing
a RESTful system, which will shortly be summarized in the following paragraph.

Client-Server. A client-server architecture helps to enforce the separation-of-concern
design pattern, thus improving the scalability and portability of the system.

2https://www.postman.com/

13

https://www.postman.com/

Chapter 3 Related Work

Figure 3.2: API architecture popularity, adapted from [1]

Stateless. Each request to the server must contain all the required information needed
to process it. Therefore, each client stores the system’s state locally and no (shared)
context is present at the server. This affects the overall reliability and scalability
of the system as the server does not need to manage any kind of state and can
process each request individually and without context.

Caching. It should be possible to cache responses for a given time interval to reduce
network traffic and improve the performance by preventing repeated requests.

Uniform Interface. A uniform interface supports the interfaces usability since the
architecture is simplified and further evolvements of both the client and the server
can be done independently.

Layered System. Within a layered system, each component can only see and interact
with its own and adjacent layers, guaranteeing separation of concern and providing
security as well as scalability benefits.

Code-On-Demand. This is the only optional constraint of the REST architecture,
and it allows clients to download additional code to reduce the amount of initially
needed features as they can be fetched and implemented at runtime.

Seeing that there sometimes seems to exist a bit of confusion concerning the difference
between the terms REST and RESTful both in academics and industry, a brief expla-
nation is given: REST is the name of the architecture, and every system or web API
that sticks to the previously depicted constraints is called RESTful [26].

14

3.2 REST(ful) web API

3.2.2 Maturity Models

Maturity models help determine a software’s maturity level, i.e., making it easier to
categorize and subsequently evaluate them. Therefore, they create a good starting point
and aid the developer and evaluator in finding the proper focus for implementing, vali-
dating, and assessing a software system that uses a web API [42]. There are a multitude
of different use cases: cybersecurity [3], software processes [20], and web APIs; to name
a few. This work only considers the following two maturity models for RESTful web
APIs: the Richardson Maturity Model and the WS3 Maturity Model.

Richardson Maturity Model

The Richardson Maturity Model was developed and presented by Leonard Richardson
in 2008 and is the most used maturity model when talking about RESTful web APIs
[41]. It establishes four levels for which an API, upon reaching level 3 is called ”truly
RESTful” [14, 31]. Each level adds additional functionality to the system and they can
be described as follows:

Level 0: Starting at level 0, the API only consists of one URI3, one HTTP method
(POST), and only uses POX (plain old XML), similar to RPC (remote procedure
calls) or SOAP (simple object access protocol).

Level 1: The next level introduces different resources. Hence, each resource has a
corresponding URI and can be addressed with the HTTP POST method.

Level 2: By not only allowing the HTTP POST method but also the other HTTP
methods (e.g., GET and DELETE)4, the API can now use them as close to as they are
used by HTTP. This leads to intuitive interactions based on the CRUD operations
(Create, Read, Update, and Delete).

Level 3: The final level adds hypermedia controls that are also called HATEOAS
(Hypermedia As The Engine Of Application State). They enable resources to
describe their capabilities and relations to other resources so that the client does
not need to know anything about the API structure but can navigate it only using
the provided controls.

3Uniform Resource Identifier as defined by [55]
4Includes all methods defined by [23]

15

Chapter 3 Related Work

Figure 3.3: The four levels to reach REST [15][41]

WS3 Maturity Model

TheWS3 Maturity Model was explicitly designed for semantic RESTful APIs by Salvador
& Siqueira in 2015 and it comprises three dimensions [42]. A semantic (RESTful) API
is an API where resources and available operations are semantically described, similar
to the principles of the Semantic Web5. That means that machines can understand the
API and its resources without needing prior manual configuration. Technologies like
HATEOAS can help to achieve just that. The three dimensions are the Design, Profile,
and Semantic dimension.

Figure 3.4: WS3 Maturity Model [42]

5For more details, see [60]

16

3.2 REST(ful) web API

The design dimension correlates to the different levels of the Richardson Maturity
Model.

The semantic dimension deals with the degree to which resources and their relations
are semantically described. APIs that only describe their properties and respective
operations fall into the level of Semantic Description. They reach the level of
Linked Data if they also provide a semantic description of their relationships.

The profile dimension reflects in which detail the API deals with documentation and
if it only provides semantics for the communication protocol (Interaction Profile).
If it also includes application domain-specific details, it is categorized into the
Domain Profile.

With these three dimensions, one can classify web APIs with the triplet

DX-SY -PZ

where DX corresponds to the Design dimension level X, SY corresponds to the Semantic
dimension level Y , and PZ corresponds to the Profile dimension level Z. A dimension
with level 0 indicates, that this dimension is not supported. For example, D2-S2-P0 is the
classification for a Semantic web API that uses resources, and describes its resources and
their relationships semantically but does not support profiles, i.e., is undocumented.

3.2.3 Differences to other web APIs

In this section, REST is compared to other popular web technologies, namely RPC
and SOAP. We include RPC for this comparison, as it is one of the most referred to
architectural styles for building web APIs; right besides resource-oriented architectures
like REST [34, 42]. Logically, SOAP is also included for its prominence in the web API
community (see Figure 3.2). Consequently, RPC and SOAP can be seen as the most
vigorous competitors to REST, making it worth comparing them.

RPC A Remote Procedure Call architecture focuses on functions or actions, whereas
REST focuses on resources or objects [4]. It generally behaves as if the client
would call a local procedure or service, but instead, it is a remote endpoint. The
newer version, gRPC, basically acts the same as RPC with the exception that it
uses HTTP 2.0 instead and allows communication streams instead of relying on
the request-response pattern [34]. For this reason, gRPC is more popular today
than the original concept [4]. On the one hand, it tends to be easy to implement
and efficient during runtime, but it also has a steep learning curve in the sense
that a developer needs to know all function names and parameters before being
able to interact with and use a RPC API. In contrast, with the uniform interface
constraint in mind, a developer only needs to know the REST API’s resources
(URIs) [4, 33].

17

Chapter 3 Related Work

SOAP The Simple Object Access Protocol was developed by the W3C and designed for
exchanging information in a distributed system [61]. Because of its nature as a
protocol, it can be quite complex to implement, and it comes with some overhead
caused by its rules and restrictions [40]. It has similar (software) quality goals as
REST since it also has predefined compliance constraints and enables the extension
with Web Service Extensions like WS-Security [24] to enforce and support software
qualities. That is why SOAP is often used in enterprise scenarios [40] and was a
valid alternative to RPC systems before the introduction of REST.

Technology Type Message format Interface format

REST architecture any resource-based
(g)RPC architecture JSON, XML function-based
SOAP protocol XML function-based

Table 3.1: Summary of REST, (g)RPC, and SOAP differences and similarities

18

Chapter 4

Background

4.1 Software Qualities

Software qualities are defined as the ”degree to which the system satisfies the stated and
implied needs of its various stakeholders,” and can be further described as the ”capability
of software product[s] to satisfy stated and implied needs when used under specified
conditions” [54, Sec. 3.3259][52, Sec. 4.33]. Therefore, they significantly contribute to
the overall quality and maturity of a software system.

To help specify and provide a standardized way of evaluating software qualities, one
can choose from a variety of Software Quality Models (SQMs). An SQM sets the dif-
ferent qualities into context with each other and might combine multiple qualities into
a more general characteristic. Galli et al. [16] evaluated a broad selection of SQMs in
terms of their relevance to industry and research. They concluded that the ISO stan-
dards ISO/IEC 25010:2011 System and Software Quality Requirements and Evaluation
(SQuaRE) [53] and ISO/IEC 9126 Software Engineering - Product Quality [48] have
the highest relevance rating and should be selected when looking for an SQM. Singh &
Kannojia [47] showed that the most recognized SQMs, such as the models of McCall [11]
or Boehm [8], use similar qualities to ISO/IEC 9126. Oppositely, the renowned software
engineer Barry Boehm called the standard ”particularly weak” in the context of software
quality practices [9]. Instead, he referred to the System Qualities Ontology, Tradespace,
and Affordability (SQOTA) model for mitigating ISO/IEC 25010’s flaws. Unfortunately,
it is not that popular (yet) and is funded and used by the US military; consequently
providing the broad public only restricted access to resources and further material.

4.1.1 ISO/IEC 25010

ISO/IEC 25010:2011 introduces two quality models: The quality in use model and the
quality product model. The former consists of five, and the latter comprises eight prop-
erties, of which some are composed of multiple sub-characteristics which represent a set
of related qualities [53]:

19

Chapter 4 Background

Quality in use characteristics

Effectiveness
Efficiency
Satisfaction

- Usefulness
- Trust
- Pleasure
- Comfort

Freedom from risk
- Economic risk mitigation
- Health and safety risk mitigation
- Environmental risk mitigation

Context coverage
- Context completeness
- Flexibility

Quality Product Characteristics

Performance efficiency
- Time behavior
- Resource utilization
- Capacity

Compatibility
- Co-existence
- Interoperability

Usability
- Appropriateness
recognizability

- Learnability
- Operability
- User error protection
- User interface aesthetics
- Accessibility

Reliability
- Maturity
- Availability
- Fault tolerance
- Recoverability

Functional suitability
- Functional completeness
- Functional correctness
- Functional appropriateness

Security
- Confidentiality
- Integrity
- Non-repudiation
- Accountability
- Authenticity

Maintainability
- Modularity
- Reusability
- Analysability
- Modifiability
- Testability

Portability
- Adaptability
- Installability
- Replaceability

These models enable different stakeholders to define and evaluate software (system)
qualities efficiently. The quality in use model’s quality attributes relate to the user in-
teractions with the finished system, as they help to describe and achieve in-use goals.
Hence, the end user is the targeted stakeholder of this model. In contrast, the qual-
ity product model is set to aid developers, maintainers, and project management with
specifying requirements and by helping to assess and evaluate the current project status
based on the achieved qualities.

Ghezzi et al. [18] state that software qualities also need appropriate measurements to
determine the extent to which they were achieved. Measuring software qualities, unfor-

20

4.2 RFC 6902 - JavaScript Object Notation (JSON) Patch

tunately, highly depends on the use case and is - for most scenarios - not generalizable
and no generally accepted metrics exist. Nevertheless, there are widely accepted and
used measurement methods for some software qualities. For example, reliability can
be determined by extensive testing and given a clear description of the performance
goals, e.g., memory efficiency vs. time efficiency, and performance efficiency can also be
measured by observing resource usage and execution times.

Further, we define scalability as an additional quality, for it is frequently used in the
context of distributed systems and their architecture [14, 28]. We characterize it as the
combination of modifiability and performance.

As quality attributes must be considered throughout the entire development process [5],
we address them in different places during this work, especially during the evaluation in
Chapter 7.

4.2 RFC 6902 - JavaScript Object Notation (JSON) Patch

JSON Patch defines a format to express sequential (partial) changes to a JSON docu-
ment, e.g., a REST resource while being compatible to be used with the HTTP PATCH

method [25].

Every JSON Patch document is a valid JSON document containing an array of objects.
Each object must hold an operation field op and, depending on the operation, a from, a
path, or a value field. Possible operations are add, copy, move, remove, replace, and
test. Depending on the operation and path, one can modify a specific field (add, move,
remove, replace) or use its content for copying (copy) or validation (test) purposes.

Listing 4.1: Example JSON Patch document

[
{ ”op”: ”test”, ”path”: ”/a/b/c”, ”value”: ”foo” },
{ ”op”: ”remove”, ”path”: ”/a/b/c” },
{ ”op”: ”add”, ”path”: ”/a/b/c”, ”value”: [”foo”, ”bar”] },
{ ”op”: ”replace”, ”path”: ”/a/b/c”, ”value”: 42 },
{ ”op”: ”move”, ”from”: ”/a/b/c”, ”path”: ”/a/b/d” },
{ ”op”: ”copy”, ”from”: ”/a/b/d”, ”path”: ”/a/b/e” }

]

4.3 RFC 7807 - Problem Details

Problem Details, as defined by RFC 7807, aim to make HTTP error response more
comprehensive for both human and non-human readers [38]. They are used as either
a JSON or an XML document inside the HTTP response’s body and provide high-
level as well as low-level information about the error occurrence using different fields.

21

Chapter 4 Background

HTTP messages holding problem details either use the application/problem+json or
application/problem+xml media type. A problem detail is composed of the following
fields and can be extended with an arbitrary number of custom fields:

• type: A URI reference that identifies the problem type, pointing to a human-
readable HTML document containing problem documentation.

• title: A human-readable summary of the problem type.
• status: The HTTP status that fits this problem type.
• detail: A human-readable description of the occurrence of this problem.
• instance: A URI reference points to the origin path of the problem.

Listing 4.2 shows the body of an HTTP response containing a problem detail if, for
an imaginary web service, a document with the identifier ’abc’ was requested but not
found.

Listing 4.2: Example Problem Detail JSON document

{
”type”: ”https://example.com/error/doc not found”,
”title”: ”The document could not be found.”,
”status”: 404,
”detail”: ”Could not find a document with id ’abc’!”,
”instance”: ”/docs/abc”

}

Section 6.3.2 shows how Problem Details are used in this work and what additional fields
where added.

22

Chapter 5

Solution

Given the system model defined in Chapter 2, we propose FooSH (Framework for
outcome-oriented smart homes): a goal-oriented framework based on a web API to
create, configure, and manipulate Environment Variables with the help of Prediction
Models to tackle the described problems and challenges of today’s smart home systems.
It can be incorporated into an extant smart home system as a non-invasive extension
without disrupting it or the need for any modifications. This way, FooSH can be seen
as some kind of ”parasite” (in a good way), docking onto the existing software without
it even noticing any changes.

FooSH allows users to define environment variables to describe phenomena that usually
cannot be directly controlled by a smart home and need multiple devices to act in unison
to achieve a desired variable state. For this, controllable smart devices, i.e., devices
that contain at least one actuator, can be assigned to one or multiple environment
variables. It is worth mentioning that a device can be assigned to no, to one, or even to
multiple variables as its action might influence none, one, or numerous factors. Looking
at Figure 5.1, one can see the device assignments to two variables: brightness and
temperature. Here, the smart home comprises a smart light, smart blinds, and an AC
unit.

(a) Assignment of smart devices to bright-
ness

(b) Assignment of smart devices to temper-
ature

Figure 5.1: Assignment of smart devices to different environment variables

23

Chapter 5 Solution

It, therefore, makes sense to assign the light and the blinds to the variable brightness, as
both their states possibly influence the room’s brightness. Moreover, the AC unit and
the blinds should be assigned to temperature. Since the smart blinds restrict the light
coming in through the windows as well as (partly) blocking out the sun, reducing its
induced heat on the environment, it can and should be assigned to both variables.

The formal description of a smart home from Chapter 2 can be extended to include en-
vironment variables and allow the assignment of smart devices to a set of environment
variables V := {v1, . . . , vi | i ∈ N}, with each variable v ∈ V containing a subset of
relevant smart devices:

vn ⊆ D (5.1)

Relevant smart devices are devices that influence the variable in question, when changing
their state. As an example, a smart light bulb can be seen as a relevant smart device in
the context of a variable representing brightness, for when turning on and off the light,
the room’s brightness also changes.

Once the user creates a prediction model, it can be integrated and linked to previously
defined environment variables. It is important to note that the developer/user has the
sole responsibility for the correctness and integrity of the prediction model. The frame-
work only enables its integration into the smart home system and provides corresponding
functionalities.

Hence, the framework further extents the existing smart home description with the set
of prediction models

P := {(T, LV, f, g) | LV ⊆ V } (5.2)

with each prediction model p ∈ P consisting of a target space T , its linked variables LV ,
a prediction function f , and a translation function g.

• The target space’s purpose is to allow developers to define bounds for the variable
to allow for more efficient error checking and handling. An example could be the
target space T = [0, 50] for an indoor temperature variable.

• The collection of linked variables LV contains the variables on which the prediction
model can be applied. Linking a variable to a prediction model is necessary as the
risk of errors or unexpected behaviour and results during usage is lowered.

• The prediction function f depends on the used model and, in general, based on the
approximated environment and its effects on the smart home and a given target
value t ∈ T , it calculates a fitting smart home configuration.

• Using the translation function g, the smart home configuration is translated to a
sequence of smart home instructions that can then be executed to eventually reach
the previously specified target. The step of translating the configuration into smart
home instructions is necessary since we assume the prediction model to have no
knowledge of the actual devices in the smart home. It only knows the smart home’s

24

configuration consisting of a number of device states. The model cannot close the
gap between the configuration states c1 - cj and the corresponding physical smart
devices d1 - dj . Consequently, it also cannot tell the smart home on how to reach
the previously calculated configuration. With the help of g, however, one can map
the configuration and its states to the smart devices and generate the according
smart home instructions i1 - ij . This way, FooSH is able to use the output of any
prediction model p and forward its generated instructions to the smart home API.

t
f−→

c1
...
cj

 g−→

i1
...
ij

 (5.3)

The preceding definitions only apply to a smart home wherein the developer/user pro-
vided and configured a prediction model and at least one variable, and only if the smart
home system has an accessible API. Otherwise, FooSH cannot use its full potential and
some functionalities might not be available.

Figure 5.2 shows a prediction interaction with a smart home, with one variable repre-
senting brightness. The devices d1 and d2 were assigned to said variable and are thus
taken into account during the smart home configuration generation process. To start a
prediction, the user simply needs to specify a target (here: 600 lumens). Then, FooSH
uses the designated prediction model p1 to determine an appropriate smart home con-
figuration, including the states of the smart device. Finally, it communicates with the
original smart home API to change the smart devices’ states and ultimately reach the
desired goal. Compared to the default interaction depicted in Figure 2.2, the user does
not need to set the states of the devices individually but only needs to define the end
result instead. The reduction of user interactions and overall cognitive load will become
even more evident as the number of relevant smart devices increases.

For the aforementioned system to work correctly, it is assumed that the developer has
access to previously collected system usage data, as some prediction methods might
require training data or data for data analysis. The data collection could be done by
directly accessing the smart home API or listening into the smart home communication
channels, to name only two examples. The former approach is used by the proof of
concept discussed in Section 7.1. In the end, it is the developer’s task to determine a
way to collect data - of course, with the selected prediction method in mind. It is further
presumed that technically inexperienced users can access a user-friendly UI provided by
the developer using the framework’s web API.

The proposed framework is mainly designed to be used in the context of smart homes.
However, in theory, it can be applied to a broad selection of cyber-physical systems, with
variables generalized as environmental factors and devices being actuators affecting these
factors.

25

Chapter 5 Solution

Figure 5.2: Exemplary interaction with FooSH

26

Chapter 6

Prototype

This chapter covers the design choices and decisions on what technologies, presented in
Chapter 3 and Chapter 4 to include in this approach. It also addresses the prototype’s
architecture and implementation and succinctly gives an outline of how to interact with
and utilize the prototype’s application programming interface.

6.1 Design

Looking at the advantages of REST towards more sustainable and robust development
of software qualities, its architectural constraints, and its popularity presented in Sec-
tion 3.2, the decision to choose REST as the architecture for the framework, i.e., the
framework’s web API, was made. The constraints introduced by REST not only impose
restrictions on design choices, which might be interpreted as unnecessary or burdensome
but also guarantee and improve software qualities, which, again, speaks in favour of
implementing a RESTful API.

After considering the advantages and disadvantages of (g)RPC and SOAP over REST,
and providing a summary of their properties in Table 3.1, one can say that the decision to
choose REST can be considered a reasonable choice. Even though SOAP also makes use
of software quality-enhancing practices and extensions, it nonetheless does not suit this
use case as it is too restrictive in terms of message formats. Additionally, since SOAP is
”just” a protocol, one would still need to find and implement a fitting architecture to go
hand in hand with it. Being able to implement a RESTful API and not need to worry
about potentially missing extensions or other protocol complexities is a big benefit over
SOAP. Like SOAP, RPC also restricts the message format to XML (and JSON) which
impedes its scalability and overall use cases. Moreover, RPC postulates a client to know
about all its functions and parameters a priori which hurts the general usability of a
system.

After all, REST seems to be the best fit for a modern and sustainable solution for
building a web API with the goal of maximizing software quality characteristics.

27

Chapter 6 Prototype

6.2 Architecture

To get a better understanding of the architecture and not need to rely on classic UML
diagrams, the C4 Software Architecture Model [46], which introduces four hierarchical
diagrams, each with a differently detailed view of the architecture, is used. With this
approach, we want to provide adequate and precise depictions of both the entire frame-
work, but also individual sub-parts without sacrificing clarity for the level of detail and
vice versa.

The C4 Software Architecture Model comprises four diagrams, each diagram being a
”zoomed-in” version of a part of the previous one. The first level portrays the context of
the application and sets the software in relationship to the user as well as other relevant
software systems (see Figure 6.1).

Figure 6.1: C4 Level 1 - Architecture Context Diagram

In this work’s context, two additional entities interact with the system under develop-
ment (FooSH): the Smart Home User and the Smart Home System. The Smart Home
User operates the Smart Home System as usual, e.g., turning lights on and off, using
speech assistants, or creating home automations. Utilizing FooSH, the user can define
and manage additional variables and prediction models to extend the existing Smart
Home System with outcome-oriented prediction mechanisms. Thus, the user does not
need to control individual smart devices or groups. Instead, the user sets a goal value
for a previously defined variable and lets a prediction model take over. Subsequently,
the prediction model constructs a series of smart home instructions to achieve the user-
defined value. Before, the FooSH System needs to retrieve smart home-specific informa-
tion, such as a list of the deployed smart devices, from the Smart Home System using
its API to function properly and allow users to link variables and prediction models to
specific smart devices.

28

6.2 Architecture

6.2.1 Spring

As mentioned in Section 6.1, the REST architecture from Roy T. Fielding [14] was chosen
to design and implement the web API. Based on our experience with and the popularity
of Java in the smart home context (e.g., openHAB1 is entirely Java-based), the decision
to select it as the language for this work was made early during the development process.
Furthermore, Java supports the prototype’s interoperability as the Java Virtual Machine
(JVM) detaches Java byte code, i.e., programs written in and compiled with Java, from
the underlying hardware - allowing it to be executed on every machine meeting the
system requirements [29]. The Spring ecosystem, with its diverse use cases, extensive
support, and consideration of software qualities, offered a great opportunity to leverage a
pre-existing framework to build upon [59]. In the end, the Spring Web MVC Framework
seemed to be the best choice as a foundation for creating the FooSH prototype.

Spring Web MVC

The Spring Web MVC framework is a model-view-controller (MVC) framework out of
the Spring ecosystem [49, 58]. As the name suggests, it is based on the MVC architectural
pattern and helps developers build RESTful applications. Using a DispatcherServlet2

as the Front Controller, the framework delegates received requests to specific handlers
(controllers) and returns a response (see Figure 6.2). First, the corresponding Controller
handles the request by executing the necessary code to create a response in the form of
a model and returns it to the Front Controller. There, the response’s data is rendered
with the help of a View Template, using one of Spring’s template engines, and returned
to the client.

Figure 6.2: Spring Web MVC Servlet Engine [49]

1https://openhab.org
2See the Spring Documentation [50] for more details

29

https://openhab.org

Chapter 6 Prototype

MVCS

To further enforce the separation of concern principle of the framework and promote
REST’s layered constraint, the MVC pattern is extended with services, resulting in the
MVCS pattern. As depicted in Figure 6.3, the Model-View-Controller-Service (MVCS)
pattern (adapted for an HTTP web application) adds a Service layer between the Con-
troller andModel layer of the classic MVC pattern. Instead of directly retrieving resource
data, the Controller now interacts with one or multiple Services to handle incoming
HTTP requests and creates a View based on the Services’ return values. Here, the Ser-
vices retrieve and manipulate the Model by means of resources and their representations,
and a View consists of a JSON representation of a resource.

Having chosen an MVC architectural pattern and introducing an additional Service
layer, FooSH not only complies with the Layered System constraint imposed by REST
but also contributes to improving its modifiability and portability. The implementation
of layers allows the system to be easily changed and adapted to fit different requirements
or, if needed, accommodate software/hardware changes while only working on one layer
and keeping the other layers untouched and intact.

(a) MVC pattern, adapted from [57]

(b) MVCS pattern

Figure 6.3: MVC vs. MVCS pattern comparison

30

6.2 Architecture

6.2.2 FooSH Architecture Model

The container diagram displayed in Figure 6.4 further describes the system environment
by giving insight into the different responsibilities of various containers and their relation-
ships to and interactions with each other. It becomes clear that the prototype consists
of three parts: the API Application, the Prediction Model, and the Local Storage.

API Application Based on a Spring Web MVC application, the API Application pro-
vides means for smart home users to manage their outcome-oriented smart home
functionalities. These include connecting to and fetching from the smart home
system, creating and managing variables and prediction models, and requesting a
smart home instruction sequence for accomplishing variable value goals.

Prediction Model For determining a control sequence, the user constructs a predic-
tion model using an appropriate technology for a selection of prediction methods
and incorporates it into the API Application. Based on the configured prediction
method, it can then be used to determine an adequate smart home configuration
to reach a specified value.

Local Storage The API application writes and reads its data to and from the local
storage to avoid data loss after restarting the application. Hereby, all information
regarding fetched smart devices, configured variables, and implemented prediction
models are stored in local persistent storage.

Figure 6.4: C4 Level 2 - Container Diagram

31

Chapter 6 Prototype

Subsequently, given the architecture container diagram in addition to the constraints
imposed by Spring and MVCS, FooSH’s high-level architecture and its role in the smart
home context can be derived. Figure 6.5 portrays the prototype’s general structure.
Every HTTP request arrives at the Spring Web MVC Front Controller presented in
Section 6.2.1 and, depending on the route, delegates it to the corresponding Controller.
The delegation of requests and the remaining components are structured, with one excep-
tion, according to the MVCS pattern. One might notice that the depicted architecture
does not include a MVCS View (layer). There is no explicit View since it is implicitly
passed on from the Service to the Controller and returned to the user in form of a JSON
resource representation. Referencing Figure 6.2, one can say, that FooSH just omits the
View template and returns the somewhat ”raw” model data.

It includes additional interfaces that are necessary for accommodating

• the communication with the Smart Home API for information retrieval and in-
struction execution, and

• reading and writing framework-relevant data to and from Local Storage.

It is important to note that the Prediction Model showcased in Figure 6.4 is, from now
on, not treated as a standalone container but as a model contained within the MVCS
model layer. Thus, when speaking of a prediction model, it should be considered as such
if not stated otherwise.

Figure 6.5: High level API application architecture

32

6.2 Architecture

6.2.3 Components

In the following, with the high-level architecture in place, the different components
are defined and characterized. For this, the C4 Component Diagram, as depicted in
Figure 6.6, is used. The diagram deviates from an ordinary C4 level 3 diagram, for it is
in the form of a UML component diagram to convey the relationships and constraints
imposed by Spring Web MVC more clearly. In this format, the component diagram
again showcases the extent to which the selected Spring framework provides RESTful
functionalities and to what degree pre-implemented classes, interfaces, and structures
are used.

Figure 6.6: C4 Level 3 - Component Model

33

Chapter 6 Prototype

SpringBootApplication

The entire FooSH application is encapsulated in a SpringBootApplication3, which is
necessary to build and invoke a Spring-based software product. It comprises all other
(Spring) components, including Spring Controllers, Spring Services, (Data) Models, and
Spring ControllerAdvices. It also acts as the entry point for any REST API call and
HTTP request since it passes them to the DispatcherServlet and consequently delegates
each request to the corresponding Spring Rest Controller.

Spring Controllers

A component within the Spring Controllers grouping is either denoted by Spring’s @Con-
troller3 or @RestController3 annotation, making it a web controller. Each controller
also uses the @RequestMapping3 annotation to define the specific path (e.g., /api/de-
vices/) for which it is responsible and capable of handling requests. Given these two
annotations, FooSH (Spring MVC) is now able to effectively deal with incoming web
requests by delegating them to the corresponding Spring Controller.

DeviceController

The DeviceController is a RestController, responsible for all requests regarding smart
device management. Depending on the used HTTP method, the handling of every re-
quest is left to the corresponding Spring Service: theDeviceService. Lastly, the controller
returns the response produced by the service to the client.

The VariableController and PredictionModelController are defined equally, as they are
also RestControllers and use their respective services, VariableService and Prediction-
ModelService, to handle requests.

RootController

The RootController is responsible for serving requests on the paths / and /api. It
always (for every GET request) responds with a list of references to the root paths of
the DeviceController, VariableController, and PredictionModelController. This behavior
helps to enforce HATEOAS, and it provides a comprehensive as well as informative
”landing page” which is - especially for new users - very helpful for navigating the
API.

Section 6.3.1 describes HATEOAS and its implementation in this prototype’s context in
more detail.

3See Spring’s documentation for more information.

34

6.2 Architecture

FooshErrorController

Spring Boot provides a default whitelabel error page that, whenever there is an unhan-
dled exception or in case of a 404 Page Not Found error, is shown. It is overwritten
by the FooshErrorController to allow for creating a custom error page and custom re-
sponses. The latter, in particular, is necessary to make sure that generated responses
contain a Problem Detail4 to conform to the rest of the application’s error handling.

Spring ControllerAdvices

Components marked with Spring’s @ControllerAdvice3 allow developers to intercept
and handle errors. The system around ControllerAdvices is constructed such that if an
error is thrown anywhere in the application and, if implemented correctly, instead of
needing to handle the error at its source, a function in the corresponding ControllerAd-
vice is called. This enables centralized error handling, structuring the code more clearly
and simplifying future adjustments. Consequently, the system, or in this case, the error
handling mechanisms, are found in one place, having the same format and structure,
thus ensuring easy access and allowing for straightforward and unified modifications
throughout.

Section 6.3.2 discusses the topic of error handling in more detail.

Spring Services

A Spring component annotated with the general-purpose stereotype @Service is, in gen-
eral, considered a Spring Service [45]. The documentation states that a Spring Service
has no fixed definition and that (developer) teams may define their own semantics con-
cerning the annotation. In this work, a component annotated with @Service is consid-
ered a standalone interface, providing specific functionalities throughout the application
as part of the MVCS service layer.

DeviceService

The DeviceService provides methods to manipulate and extract device information from
the list of fetched smart devices, which becomes available after using the SmartHome-
Service.

Again, the VariableService and PredictionModelService are defined similarly, as they
provide functionalities specific to their respective data types: variables and prediction
models.

4As defined by RFC 7807 [38]

35

Chapter 6 Prototype

It is important to mention that there are more interactions between services than de-
picted in Figure 6.6. Except for the exemplary depiction of the PersistentDataService
interactions, all inter-service interactions are not shown, mainly because of readability
reasons.

PersistentDataService

The PersistentDataService can be used to write information about the managed devices,
variables, and prediction models to persistent storage. After restarting the application,
it checks whether there are any saved files. If the service finds previously stored infor-
mation, it loads it to be used again in the upcoming application session. Writing to and
reading from persistent storage detaches the model information from a session, and no
data is lost if the server restarts. This not only improves the user experience as the user
does not need to configure FooSH after every restart but also reduces the network and
smart home API load by avoiding superfluous calls to the API.

SmartHomeService

The SmartHomeService manages one instance of an ISmartHomeDeviceFetcher and one
instance of an ISmartHomeInstructionExecutor. Both interfaces communicate with the
Smart Home API, where the former provides methods to retrieve smart device informa-
tion, and the latter forwards and excutes smart home instructions. Having the abstrac-
tion of these two interfaces, one is able to connect and communicate with any smart
home, as long as it provides an appropriate API.

Helper Services

The prototype contains three additional services, summarized as Helper Services:

ListService. The ListService manages a list of devices, variables, and prediction
models. Other services are designed to use this and only this service to retrieve
and manipulate relevant information.

IdService. The IdService provides ID- and UUID-related functionalities, like checking
whether a given String is a valid UUID.

LinkBuilderService. Constructing the links for HATEOAS-conform JSON responses
requires repetitive and frequent constructions of URIs and link collections. The
LinkBuilderService aims to prevent code repetition and to provide a central inter-
face for creating HATEOAS link (collections).

36

6.3 Implementation

Models

FooSH contains various data types and models whose description would exceed this
thesis’ scope. Nonetheless, the most important model, the AbstractPredictionModel, is
presented in the following paragraph.

AbstractPredictionModel

One of the most crucial parts of the entire framework is the modularity, modifiability,
and interoperability in terms of adding and switching between prediction models. For
this reason, the AbstractPredictionModel is designed in a way that it can be switched out,
and links to variables and smart devices can be changed - everything during runtime. It
also allows the developer to use and implement arbitrary prediction methods to further
increase the range of applicable use cases.

6.3 Implementation

After discussing the design choices and presenting the prototype’s architecture, the fol-
lowing sections go into more detail about the actual implementation details and the
realization of the preceding prototype specification. One can gain additional insights
from FooSH’s code base5 that are not described either due to necessity or space and
time constraints.

6.3.1 REST API

With its resource-oriented architecture, REST introduces resources in the form of models
in the MVCS model layer, each with its own URI. Table 6.1 displays an overview of the
three distinct resources of FooSH: devices, variables, and prediction models. Here, {id}
is used as a placeholder for a resource identifier.

Every path, with a few exceptions, supports all ordinary HTTP methods in an intuitive
way, including GET, POST, PUT, PATCH, and DELETE, to enforce REST’s uniform interface
constraint and increase the API’s learnability. These exceptions include the root paths
and the PUT method. The root paths / and /api only support GET, as their purpose is to
act as a landing page without any inherent functionality. Even though PUT is supported,
it is not allowed to be used. Whenever someone tries to send a PUT request, a 405

Method Not Allowed is sent, based on the following two arguments: (i) We wanted
the API operation to stay atomic. Therefore, a user is obliged to use DELETE and POST

5https://github.com/MalteJosten/foosh

37

https://github.com/MalteJosten/foosh

Chapter 6 Prototype

instead to replace a resource. (ii) Sometimes, replacing a resource is not wanted. That is
the case for the devices that are externally defined by the smart home or the prediction
models that are not (yet) set up to be manipulated after their initial implementation.

Another exception or particularity, to be more exact, is FooSH’s behaviour regarding the
DELETE operation. Whenever the user tries to delete one of the collections, a save file is
created (with the additional extension .old) before deleting the file stored in persistent
storage. This way, the collection’s old state can be recovered if necessary. Hence, the
prototype becomes more reliable and robust against (erroneous) user behaviour. In
addition, this measure also improves the user experience by providing a - to be fair -
relatively laborious way of undoing and restoring a deleted collection.

Table 6.1: Overview and description of available FooSH API paths

Path Description

/ Redirects to /api.
/api Landing page of the API. Gives an overview over the fol-

lowing paths.

Devices
devices/ The collection of smart home devices.
devices/{id} An individual smart home device.

Variables
vars/ The collection of environment variables.
vars/{id} An individual environment variable.
vars/{id}/devices/ The collection of an environment variable’s linked smart

devices.
vars/{id}/models/ The collection of an environment variable’s linked predic-

tion models.

Prediction Models
models/ The collection of prediction models.
models/{id} An individual prediction model.
models/{id}/mappings/ The collection of parameter mappings of an prediction

model.

A detailed list of all endpoints6 with possible HTTP response codes and further request
parameters is given in Appendix A.

6An endpoint is the combination of a path, e.g., api/devices/, and the HTTP request method, e.g.,
GET

38

6.3 Implementation

FooSH comes with an additional oddity in that it uses a special document type for its
HTTP PATCH requests: JSON Patch documents.

JSON Patch

Using JSON Patch Documents within HTTP PATCH requests allows targeted modifi-
cations of individual fields of a resource. However, RFC 6902 does not include any
functionalities to restrict access or modification neither for the op or path fields. Even
though there are some Java libraries for applying and executing JSON Patch documents
on resources, they also provide no restriction functionalities. But those restrictions are
especially important for preserving the external resources’ integrity, i.e., that some fields
of devices and prediction models remain untouched. And for those fields that can be
altered, only a selection of operations shall be allowed to, for example, avoid the deletion
of a device’s name or crucial information about a prediction model. Simply removing the
ability to use HTTP PATCH requests was no viable alternative either, for allowing users
to make minor changes to the resources during runtime bolsters FooSH’s usability and
user experience. Therefore, based on RFC 6902, an own handling of JSON Patch doc-
uments was written (FooSHJsonPatch), where, depending on the resource, only some
paths (resource properties) with selected operations are allowed. The list of affected
resources and the associated operations and fields are displayed in Table 6.2.

Table 6.2: Overview of restrictions imposed by FooSHJsonPatch

URI Path Operation(s) Description

devices/{id} /name REPLACE Edit field AbstractDevice.name

vars/{id} /name REPLACE Edit field Variable.name

vars/{id}/devices/ / ADD Add a device-ID to the list to
Variable.deviceIds

/{uuid} REMOVE Remove the device-ID {uuid}
from Variable.deviceIds

vars/{id}/models/ /{uuid} ADD, REMOVE,
REPLACE

Add/Remove/Replace a link to
the model with id {uuid}

models/{id} /name REPLACE Edit field AbstractPrediction-

Model.name

models/{id}/mappings/ /{uuid} ADD, REMOVE,
REPLACE

Add/Remove/Replace a link to
the variable with id {uuid}

39

Chapter 6 Prototype

HATEOAS

With HATEOAS (Hypermedia As The Engine Of Application State), the server provides
clients (users) with dynamically generated hyperlinks that describe the resource’s rela-
tions with and to other resources as well as available operations to interact with these
resources [19, 31]. This way, the user does not need any a priori knowledge of the pro-
totype’s API and should be able to navigate it solely based on the provided hypermedia
controls. Implementing HATEOAS contributes to two major points:

1. HATEOAS supports the Uniform Interface constraint introduced by Fielding [14]
as it realizes, as its name suggests, one of the interface constraints: hypermedia
as the engine of application state. The other interface constraints are fulfilled
by employing unique identifiers for each resource and passing JSON documents
for representing and HTTP methods for modifying and accessing a resource (see
Section 6.3.1).

2. HATEOAS is part of the requirement for reaching Level 3 of the Richardson Ma-
turity Model presented in Section 3.2.

Since no standard clearly describes how HATEOAS should be implemented, we imple-
mented the format used by Microsoft in their Web API Design Best Practices document
[31]. In contrast to the format introduced by Fowler [15], it not only includes the rela-
tion name and corresponding URI but also additional fields that inform the user about
the available HTTP methods and accepted media types. Listing 6.1 depicts the body
of the response to an HTTP GET request for retrieving information about the variable
brightness. In addition to the variable data (provided by the field variable), the response
includes a links block containing the hypermedia controls. Each link has a relation field,
describing the resource’s relation to other resources with their respective URI provided
by the link field. The types and action fields give insight into what media types are
accepted by which HTTP method and what HTTP methods are actually available, re-
spectively. This links block, i.e., the hypermedia controls, must be, and are, included
in every response message, consequently having a decisive positive effect on the user
experience, for it greatly improves the framework’s learnability and operability.

40

6.3 Implementation

Listing 6.1: FooSH HATEOAS Response Excerpt

GET /api/vars/brightness HTTP/1.1

HTTP/1.1 200 OK
Content-Type: application/json

{
”variable”: {

”id”: ”56cf5a57−d4bb−465c−8f46−c174921ff35f”,
”name”: ”brightness”,
”modelIds”: [],
”deviceIds”: [”fed5db42−0bf5−44d0−8bfe−89e530a6aa9f”]

},
” links”: [

{
”relation”: ”selfStatic”,
”link”: ”http://localhost:8080/api/vars/56cf5a57−d4bb−465c−8f46−

c174921ff35f”,
”action”: ”GET”,
”types”: []

},...
{

”relation”: ”selfName”,
”link”: ”http://localhost:8080/api/vars/brightness”,
”action”: ”GET”,
”types”: []

},...
{

”relation”: ”device”,
”link”: ”http://localhost:8080/api/devices/fed5db42−0bf5−44d0−8bfe−89

e530a6aa9f”,
”action”: ”GET”,
”types”: []

},
{

”relation”: ”device”,
”link”: ”http://localhost:8080/api/devices/fed5db42−0bf5−44d0−8bfe−89

e530a6aa9f”,
”action”: ”PATCH”,
”types”: [”application/json−patch+json”]

},
{

”relation”: ”variables”,
”link”: ”http://localhost:8080/api/vars/”,
”action”: ”GET”,
”types”: []

},...
]

}

41

Chapter 6 Prototype

6.3.2 Error Handling

Drew [13] and Hsieh et al. [22] showed that implementing and maintaining sophisticated
error handling measures leads to better user experience, increased robustness of the soft-
ware, and enables thorough debugging and troubleshooting by providing the user with
comprehensible feedback and a working software - even when encountering error states.
Good error handling also improves the software’s reliability by making it more robust
against (internal) failures and incorrect use. For these reasons, FooSH implements vari-
ous error handlers in combination with commonly used and, in general, helpful standards
while considering exception-handling goals, as defined by Chen et al. [12].

As already mentioned during the description of the Spring ControllerAdvices in Sec-
tion 6.1, Spring enables centralized error management, allowing for a more sophisticated
error handling and subsequently enforcing and supporting numerous software qualities.
Thus, we further extend the range of improved software qualities by using Problem De-
tails (RFC 7807) (see Section 4.3 for more details) as the standard response for users
in reaction to an error. They help to convey more specific information about the cause
of a problem or error than the simple HTTP status code that only provides a rough
description (in the form of an error code) of what caused an error. Fortunately, Spring
already provides a Problem Detail implementation and corresponding methods to inte-
grate them into an existing project [51]. They are designed according to RFC 7807 and
are used in the intended way, except for the fact that, in FooSH, the field type is left
blank due to time constraints, and the field title is used to communicate the exception
name to allow for better debugging and troubleshooting. It is important to note that the
former adaption (empty type field, i.e., having the value ’about:blank’), according to
RFC 7807, indicates that the problem has no detailed or necessary to mention semantics.
Although FooSH uses an empty type field but still provides further information about
the problems, it technically violates the standard and confusion could arise. To compen-
sate for the actual specification of the type, the title field is used as described above.
Since the principles of HATEOAS also apply for error responses, FooSH additionally
provides a block of links for every problem detail.

The exemplary JSON payload in Listing 6.2 depicts the response for an HTTP GET

request on the path api/vars/abc with no currently defined variables. It correctly
states the exception that caused the error (VariableNotFoundException, as there is no
variable with the name ’abc’) as well as the corresponding HTTP status code (404 Not

Found). The Problem Detail also lists the HATEOAS links to the related resources.
Here, the only related resource is the collection of variables on path api/vars/.

42

6.3 Implementation

Listing 6.2: Exemplary FooSH Error Response

GET /api/vars/abc HTTP/1.1

HTTP/1.1 404 Not Found
Content-Type: application/problem+json

{
”type”: ”about:blank”,
”title”: ”VariableNotFoundException”,
”status”: 404,
”detail”: ”Could not find variable with name ’abc’!”,
”instance”: ”/api/vars/abc”,
” links”: [

{
”relation”: ”variables”,
”link”: ”http://localhost:8080/api/vars/”,
”action”: ”GET”,
”types”: []

},
{
”relation”: ”variables”,
”link”: ”http://localhost:8080/api/vars/”,
”action”: ”POST”,
”types”: [”application/json”]

}
]

}

Using already established standards and technologies offers two main advantages: First,
broadly accepted methods are assumed to be sophisticated enough to be used by many
people and, therefore, seem to work correctly. It also implies that the chance of the
developer needing to learn new principles decreases as they might already be familiar
with them, improving the framework’s learnability.

The software shows acceptable recoverability and fault tolerance as, if an error occurs,
whether while parsing a request or during internal processes, it not only tries to go back
to a safe state (if necessary) but also stays operational. In general, FooSH follows the
following steps in case of an error:

1. An error occurs.
2. The error is detected and handed to the corresponding Spring advisor.
3. The system is recovered to the most recent safe state, e.g., reversing the ac-

tion/change that triggered the error.
4. The user is informed about the error and, if available, possible reasons and, as

previously mentioned, a link block to conform to HATEOAS is provided.

6.3.3 Testing

Similar to the arguments for error handling, Horgan et al. [21] concluded that testing
also enhances and reinforces software qualities. Testing supports these SQs as they reveal

43

Chapter 6 Prototype

the degree to which (i) the software works as intended without showing undesirable side
effects, (ii) the error handling is working correctly, and (iii) the software acts predictably
and maturely. The ability to thoroughly write numerous (good) tests for a developed
software product indirectly proves its testability in the context of maintainability - and
thus establishes yet another desired software quality.

Java and Spring form a good starting point for testing purposes as Spring integrates the
popular JUnit testing framework7 to enable unit and integration testing of Spring Boot
and Spring MVC-specific features that include but are not limited to Spring RestCon-
trollers.

To thoroughly test the developed REST API, 237 integration tests were implemented.
They cover all 50 available endpoints, validating the API’s responses to as many diverse
requests as possible. Here, the process of validating means to compare the actual re-
sponse with the desired response. If the actual response matches the desired one, the
test passes. This way, the general behaviour, the correct error handling as well as the
edge cases are tested and covered. It is important to note that one needs to have a
working smart home system in place. That is because some tests have to use the smart
home API for covering device fetching and smart home instruction execution. However,
the smart home API was not mocked due to time constraints, requiring an actual smart
home system for the integration tests.

The implemented unit tests (60 in total) primarily cover self-written algorithms, such
as the request and name change validations. Unit test coverage is only limited to these
methods as functionalities provided by external libraries/frameworks are considered suf-
ficiently tested, and further self-implemented, partly trivial functions were disregarded
due to time constraints and necessity.

6.3.4 Developer Guide

This section serves the purpose of addressing technical prerequisites and offering a guide
for developers on what classes and functions need to be implemented.

Technical Prerequisites

FooSH is based on a Java 17 Spring Boot 3.1.1 project, using Maven8 for dependency
management. Therefore, a corresponding Java version, e.g., OpenJDK 17 as well as
Maven, has to be installed.

7https://junit.org/
8https://maven.apache.org/

44

https://junit.org/
https://maven.apache.org/

6.4 Usage

AbstractDevice

The abstract class AbstractDevice needs to be implemented to fit the needs of the
smart device representation enforced by the smart home, potentially augmenting the
implementation with additional smart home-specific data. Such data may include its
name or API URL.

AbstractPredictionModel

For now, the prototype does not administer the ability to create a prediction model
during runtime. Instead, the developer has to define and implement a class realizing the
AbstractPredictionModel. FooSH does not restrict the implementation of the cus-
tom prediction model classes, meaning that the developer has complete freedom in their
decision-making. Prediction-making can therefore either be done internally as a part
of FooSH or externally by calling and utilizing external code. The AbstractPredic-

tionModel implements the IPredictionMaker interface, which provides the makePre-

diction() method used for accepting the prediction’s goal value and returning a list
of smart home instructions for achieving that value. It defaults to returning an empty
instruction list, resulting in leaving the smart home as it is, effectively not reacting to
any requests. If the developer wishes for appropriate handling of requests and finding
viable smart home configurations, they are advised to overwrite makePrediction(),
customizing it to their prediction model’s demands.

ISmartHomeDeviceFetcher and ISmartHomeInstructionExecutor

FooSH’s connection to the smart home system significantly depends on the pre-existing
smart home API techniques, necessitating the implementation of the ISmartHomeDe-

viceFetcher and ISmartHomeInstructionExecutor interfaces. Without their imple-
mentations, FooSH is neither able to gather any smart device information needed for its
operation nor to apply any changes to the smart home.

6.4 Usage

With everything set up, i.e., a defined and incorporated prediction model, and after
”connecting” FooSH to the already operating smart home API, one is able to interact
with FooSH’s web API, configuring, managing, and employing environment variables
to alter the smart home’s state in a goal-oriented manner. To fully utilize FooSH and
invoke their first goal-oriented request, a user is required to follow a minimum of five
steps:

45

Chapter 6 Prototype

Step 1: Fetch smart devices

First, the user needs to gather the currently active smart devices from the smart home
API by submitting a POST request to /api/devices/ with the option to provide further
details, e.g., authentication credentials, if needed.

POST /api/devices/ HTTP/1.1
Accept: application/json

{
”details”: {

”token”: ”foo”,
”user”: ”bar”

}
}

Step 2: Define environment variable

Then, the user has to create an environment variable with a POST request on /api/vars/,
given a variable name that is not yet used, e.g., brightness.

POST /api/vars/ HTTP/1.1
Accept: application/json

{
”name”: ”brightness”

}

Step 3: Assign device(s) to variable

In the third step, the user assigns an arbitrary number of smart devices to the pre-
viously created environment variable with POST /api/vars/{id}/devices/. The re-
quest’s body contains the list of IDs of the devices that can be retrieved with GET

/api/devices/ and should be assigned to the brightness variable.

POST /api/vars/devices/ HTTP/1.1
Accept: application/json

{
”deviceIds”: [

”91e0b147−3e7b−4e7a−90ca−f392453937a9”,
”4314c0b2−749d−447f−b807−6984556486a8”

]
}

46

6.4 Usage

Step 4: Link variable with prediction model

The last thing to do before being able to initiate a prediction is to link an environment
variable with a prediction model. This way, the user defines the mapping of the input
parameters of the prediction model to the actual smart devices of the environment
variable. A variable can be linked to a prediction model by either sending an HTTP
POST request to /api/vars/{id}/models/ or /api/models/{id}/mappings/.

POST /api/model/my-model/mappings HTTP/1.1
Accept: application/json

{
”variableId”: ”35d6461e−a3fd−4d45−ab80−92657d4a9f06”,
”mappings”: [

{
”parameter”: ”x1”,
”deviceId”: ”91e0b147−3e7b−4e7a−90ca−f392453937a9”

},
{

”parameter”: ”x2”,
”deviceId”: ”4314c0b2−749d−447f−b807−6984556486a8”

}
]

}

Step 5: Make a prediction

Posting an HTTP POST to /api/vars/{id}, the user can finally kick off a prediction
process for an environment variable. In the example below, the user utilizes the pre-
viously linked prediction model my-model to generate a smart home configuration that
attains a brightness of 50 (%). Since the field execute is marked as true, the generated
configuration is converted into appropriate smart home instructions, which are sent to
the smart home API, actually changing the smart home’s state, thereby achieving the
desired brightness of 50 (%).

POST /api/vars/brightness HTTP/1.1
Accept: application/json

{
”modelId”: ”my−model”,
”value”: 50,
”execute”: true

}

Once an environment variable and prediction model are established, they are continu-
ously available for further requests and determining corresponding smart home configu-
rations, assuming a consistent smart home composition.

47

Chapter 7

Evaluation

The evaluation first addresses a proof of concept to determine the prototype’s function-
ality and the degree to which it applies to established smart home systems. It then deals
with the prototype itself: how does it answer or solve the research questions presented
in Section 2.3, and which benefits or limitations arise when applied to a smart home
system.

7.1 Proof of Concept

The following proof of concept was conducted to show the functional suitability of FooSH.
It was set to be based on the desire to automate the brightness control on a desk to
allow for reliably compensating for different external factors and giving the smart home
user a consistent experience.

As mentioned before, using FooSH without a prediction model defies its purpose. Hence,
the first step in preparing to deploy FooSH in an existing smart home system is to con-
struct an appropriate prediction model. For properly constructing a prediction model,
one needs some data to base the prediction method on. That is why a measurement setup
was built to capture randomly generated smart home usage data. The next section deals
with the details of the measurement setup, and Section 7.1.2 describes the acquired data
that is used by the selected prediction model discussed in Section 7.1.3. The last two
parts deal with the implementation of the prediction model using the FooSH framework
and evaluating the concept’s validity.

7.1.1 Setup

The existing smart home runs on openHAB and comprises a desk lamp and a Shelly
Smart Plug S1, which allows for controlling the light (turning it on and off). At the
time of carrying out the proof of concept, no smart lamp was available. For this reason,

1https://kb.shelly.cloud/knowledge-base/shelly-plus-plug-s-1

49

https://kb.shelly.cloud/knowledge-base/shelly-plus-plug-s-1

Chapter 7 Evaluation

the smart plug and lamp are used as replacements for one smart lamp to yield the
same results. Consequently, limited to this scenario, the prediction model’s goal is to
determine when and under what circumstances the smart plug, i.e., the lamp, should be
turned on, given a desired brightness value at the desk.

In order to collect (artificially) generated data, a Measurement Hub and Measurement
Station were used to (i) randomly switch the smart plug on and off, (ii) record the
resulting brightness at the desk, and (iii) collect the captured values in combination
with the corresponding smart home configuration. The physical setup is depicted in
Figure 7.1, showing the placement of the lamp in relation to the measurement station
MS, as well as the source of natural light: a wide window front to the right side of the
desk.

Figure 7.1: Data Collection and Measurement Setup

Measurement Hub

The measurement hub is a Raspberry Pi 4B2, running two programs, fulfilling the fol-
lowing two purposes:

1. It controls the smart plug, turning the plug on and off at random to generate
extensive and varied data.

2. It hosts and acts as a collection point for the measurement station to send its
measurements to and stores them, in combination with the corresponding smart
home configuration, in a MongoDB database.

The script for changing the smart plug’s state communicates with the openHAB API,
and every 120 seconds, it, based on a PRNG (pseudo-random number generator), either
turns the plug on or off, simultaneously turning on or off the light as well. Whenever
the hub receives new data points from the measurement station, it fetches the smart
devices’ states from the openHAB API and stores all gathered information (brightness

2https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

50

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

7.1 Proof of Concept

measurement, smart home configuration, and timestamp) in a MongoDB database. This
way, one can later use the measurement data to create and potentially train a prediction
model.

Measurement Station

The measurement station deals with the problem of capturing the brightness levels
present at the desk. A common, even though not reliable, solution requires a light
dependent resistor, also known as photoresistor. Given the fact that a photoresistor
changes its resistance depending on the amount of light hitting the sensor and by ap-
plying voltage to the resistor, one can measure the light intensity, i.e., brightness, based
on the voltage being passed through.

With the circuit shown in Figure 7.2, one can capture the brightness in one area in a
room. The circuit consists of a Raspberry Pi Pico W3, a 10kΩ resistor, and a pho-
toresistor. All components were mounted on a breadboard according to the schematic,
resulting in the conversion of the analog value generated by the photoresistor to a digital
16-bit signal at the corresponding GPIO pin. The sampling rate was, according to the
Nyquist-Shannon sampling theorem, set to 60 seconds. This allows the Raspberry Pi
Pico to successfully capture the brightness as a digital value, allowing it to be sent to
the measurement hub for further processing.

Figure 7.2: Measurement Station Circuit Schematic

3https://www.raspberrypi.com/products/raspberry-pi-pico/

51

https://www.raspberrypi.com/products/raspberry-pi-pico/

Chapter 7 Evaluation

One major problem when measuring brightness with a photoresistor is the fact that the
resistor only captures the light punctually. To allow for more ambient light to be detected
by the resistor, one can typically use specifically produced hardware, like Fresnel lenses.
They collect light from a broader area and focus it on one point: the photoresistor. Since
there was no Fresnel or similar lens available, and since the design and construction of
a proper case for the measurement station would have exceeded the time constraints
for this work, an intermediate solution was applied. This solution includes putting the
breadboard with all the wired-on hardware into an opaque container, only leaving out a
hole for the resistor, covered in a diffused material (see Figure 7.3). The semi-transparent
material acts as a diffuser to smooth out the captured light and improve the blending
of different light sources.

(a) Breadboard measurement station (b) Measurement Station with light diffu-
sion cover

Figure 7.3: Measurement Station Setup

For further implementation details, either regarding the hub or the station, one can look
into the code in the corresponding Github repository4.

4https://github.com/MalteJosten/foosh-measurement

52

https://github.com/MalteJosten/foosh-measurement

7.1 Proof of Concept

7.1.2 Acquired Data

The collected data is stored in a MongoDB database, a NoSQL database. Listing 7.1
presents the content of an exemplary MongoDB document (without irrelevant MongoDB-
generated fields). It holds a timestamp, encoded in UTC in milliseconds, representing
the moment when the measurement was taken. Thus, it is necessary to keep this in mind
for future reproductions of the experiment or usage of the collected data, e.g., training a
prediction model. It additionally stores the measured brightness value in the field value,
and the corresponding smart home configuration, i.e., the states of all smart devices, is
stored in the items array. The measurements are stored in their original ”raw” form,
to enable future adaptions to make use of the unmodified values. This maximizes the
potential for a range of possible new use cases and applications.

Listing 7.1: MongoDB Entry

{
”timestamp”: 1692343421703,
”value”: 53517,
”items”: [

{
”link”: ”http://192.168.108.103:8080/rest/items/plug1”,
”state”: ”ON”,
”editable”: true,
”type”: ”Switch”,
”name”: ”plug1”,
”label”: ”shelly−plug−1”,
”tags”: [”Office”],
”groupNames”: [”Office”]

},
{
”link”: ”http://192.168.108.103:8080/rest/items/foo”,...
”groupNames”: [”Office”]

},
...

]
}

The brightness measurement experiment ran for three consecutive days, and its result is
plotted in Figure 7.4. Here, we differentiate between data points with the light switched
on (yellow) and data points with the light switched off (blue). This way, one can clearly
see the differences in the light affecting the brightness - especially at night. Based on
the setup depicted in Figure 7.1, it is predictable that the lamp has nearly no effect on
the overall brightness during the day. That is because the room is mainly illuminated
by sunlight, and the lamp’s light only becomes noticeable after sunset. The variations
during the day are caused by different weather conditions (sunny, cloudy, etc.). As
previously mentioned, the brightness is converted to a 16-bit integer number, resulting
in a possible value range of 0-65535. This range is therefore used as the y-axis of the
plot.

53

Chapter 7 Evaluation

F
ig
u
re

7.4:
R
aw

b
righ

tn
ess

m
easu

rem
en
t
d
ata

54

7.1 Proof of Concept

7.1.3 Prediction Model

The approaches presented in Chapter 3 introduced various prediction techniques and
showed only a small selection of possible uses for (popular) machine learning or logical
methods. However, not every prediction method fits every problem. We decided that
there is no need for a complex prediction method as developing approximation functions
can be done by hand and suffices for the purpose of this simple proof of concept. For this
to work and enable a more intuitive user experience, the initial value range of 0-65535
was mapped to 0-100. This way, the user can define a more natural goal in the form of
providing a brightness percentage.

The first step was to divide the data set into two distinct data sets: one containing only
brightness values for when the lamp was turned on (ON-State data) and a second one
with only brightness values for when the lamp was turned off (OFF-State data). Then,
each data set was smoothed using an average sliding window to discard any outliers and
possible measurement inaccuracies. In addition, this made the subsequent steps easier.
Figure 7.5 shows the smoothed graph for the OFF-State data.

Figure 7.5: Smoothed, scaled OFF-State data

55

Chapter 7 Evaluation

Next, the measurement data was divided into 24-hour sections, ranging from 00:00 to
23:59. Using a sophisticated prediction technique like symbolic regression would have
also required dividing the data into multiple sections to be able to effectively determine
an approximation for a day’s worth of brightness. But in contrast to simple approx-
imations (lower degree polynomial functions), symbolic regression would have needed
further training without guaranteeing accurate results. Thus, if a simpler solution also
yields sufficient results, it is unnecessary to consult complex methods. We defined the
different sections by looking at the entire graph, identifying points at which the graph’s
trend noticeably changes during each 24-hour day. The divisions and resulting intervals
are marked in Figure 7.6 with black lines, overlaying the actual brightness values of the
third day for comparison.

Figure 7.6: OFF-State data with marked intervals

56

7.1 Proof of Concept

The third step was to determine the polynomial functions that give a sufficient approxi-
mation of the actual brightness curve for an entire day. The interval boundaries defined
in the preceding step were used as the x-values for finding the points (xn, yn) needed
for deriving the respective function. Since one can derive a linear (quadratic) function
given two (three) points (x1, y1), (x2, y2), (x3, y3), the average y-value, i.e., brightness
value for each known interval boundary, was calculated using Table 7.1. Each row of
the table represents one interval boundary, with the columns Time and t containing the
time of the day in military time and the time of the day in minutes, respectively. The
following four columns, Day 1 to Day 4, describe the brightness value on each day at
the time t, and their average is summarized in the last column.

The average values were then used as the y-values of each point, completing each (x, y)
tuple, i.e., a Time-Brightness pair. Subsequently, with the help of the now fully defined
pairs, the approximation functions f1 - f5 and g1 - g5, depicted in the Function column
of Table 7.2, could be derived.

Table 7.1: Interval bound values estimation

Time t Day 1 Day 2 Day 3 Day 4 Average

OFF-State
19:30 1170 1.85 1.73 2.41 2.00
00:00 0 1.21 1.19 1.27 1.22
03:30 210 1.28 1.35 1.29 1.31
07:00 420 76.98 76.93 76.96
16:20 980 92.88 93.74 93.81 93.48

ON-State
19:37 1177 29.18 28.52 28.46 28.72
00:00 0 28.95 28.53 28.74 28.74
03:45 225 29.14 28.91 29.26 29.10
07:15 435 79.53 77.83 78.68
15:55 955 93.03 89.00 93.34 91.79

57

Chapter 7 Evaluation

Table 7.2: Approximation function derivation

Interval Start Value End Value Function

OFF-State
00:00 - 03:30 1.22 1.31 f1(t) = 1.25
03:30 - 07:00 1.31 76.96 f2(t) = −0.00171541t2+1.44095238t−

225.64
07:00 - 16:20 76.96 93.48 f3(t) = 0.0295t+ 64.57
16:20 - 19:30 93.48 2.00 f4(t) = −0.00253407t2+4.96678116t−

2340.2428
19:30 - 00:00 2.00 1.22 f5(t) = −0.0029t+ 5.38

ON-State
00:00 - 03:45 28.74 29.10 g1(t) = 0.0016t+ 28.74
03:45 - 07:15 29.10 78.68 g2(t) = −0.00108262t2+0.95054677t−

129.9650
07:15 - 15:55 78.68 91.79 g3(t) = 0.0252t+ 67.7130
15:55 - 19:37 91.79 28.72 g4(t) = −0.00127972t2+2.44427603t−

1075.3518
19:37 - 00:00 28.72 28.74 g5(t) = 28.72

Finally, depicted in Figure 7.7, the derived approximation functions can be used as a
composite function for the 24-hour brightness estimation. These functions are equal
to the following function fapprox and describe the brightness with the light turned off5,
using the previously derived sub-functions:

fapprox(t) =

f1(t) , 0 ≤ t ≤ 210
f2(t) , 210 ≤ t ≤ 420
f3(t) , 420 ≤ t ≤ 980
f4(t) , 980 ≤ t ≤ 1170
f5(t) , 1170 ≤ t ≤ 1439

5The function gapprox was defined equally.

58

7.1 Proof of Concept

Figure 7.7: OFF-State data with approximation functions

With the approximation function in place, the idea to use fapprox as a threshold for
the decision to turn on the light emerged. The resulting algorithm acts in a way that
every brightness value request that contains a brightness less than the approximated
brightness (using fapprox) can be met without turning on the light. Consequently, for
every request exceeding the OFF-State brightness value, the lamp is turned on. This
way, the prediction model always tries to ensure reaching the desired goal with the least
effort, i.e., only turning on the light when it is really necessary.

7.1.4 Implementation

First, a Device data type, inheriting the AbstractDevice class, was defined to include
all necessary information provided by the smart home that is needed for this use case.
To successfully fetch the smart devices from the OpenHAB API and send and execute
smart home instructions, the interfaces ISmartHomeDeviceFetcher and ISmartHomeIn-
structionExecutor were implemented, respectively.

Finally, based on the already presented prediction model, the AbstractPredictionModel
was used to create a custom prediction model class, including the prediction function
makePrediction(), shown in Algorithm 1. It takes a target value v and calculates, based

59

Chapter 7 Evaluation

on the time of the day, the current brightness level (with the smart lamp turned off)
using fapprox. If the computed value is less or equal to the target value, the smart
home instruction(s) to turn the lamp off is generated since the ambient light apparently
suffices to achieve the desired brightness. However, if the target value exceeds the
prediction value, the instruction for turning on the lamp is generated. In the end, the
function makePrediction() produces a sequence of smart home instructions (in this case,
only containing one instruction) to modify the smart home, consequently achieving the
previously specified target value.

Algorithm 1 Prediction making and smart home instruction generation

procedure makePrediction(targetV alue : v)
instr ← []
t← time
if fapprox(t) ≤ v then

instr ← instr + turn light off
else

instr ← instr + turn light on
end if
return instr

end procedure

7.1.5 Validation & Evaluation

Various tests were conducted to validate the implementation and correctness of the
custom prediction model and its incorporation into FooSH, as well as FooSH’s integration
into the existing smart home system. These tests covered two different parts:

1. Test whether the smart home could be properly integrated and interacted with.
2. Test whether the prediction model yielded satisfying results, i.e., serve its purpose.

The former was tested by starting the application and retrieving the list of devices.
The resulting list matched the list of smart devices present in the smart home that
were also registered in openHAB, essentially affirming the correct smart device retrieval.
Validating the instruction execution was done in combination with the latter part by
inducing multiple prediction requests and comparing the resulting smart home behaviour
with its expected behaviour (either turning on or off the smart lamp). All requested
predictions were handled correctly and produced a satisfying result, causing, if necessary,
an appropriate change in the smart home to reach the initially specified target brightness
value. Here, satisfying results are results that achieve the desired outcome with minimal
effort, i.e., only turning on the light if really necessary.

60

7.1 Proof of Concept

It is important to note that the presented prediction model introduces seasonal inaccu-
racies, as the measurement period only covered three days in August. Therefore, the
collected data and the resulting approximation function(s) should not be applied for
prediction-making in, e.g., January, as the weather and, most importantly, the bright-
ness levels during the day vary immensely. The approximation function would always
yield a brightness level of 93.48 at 16:20 (see Table 7.1). This value may be correct for
an August day but not for a day in January, as during winter, it usually gets darker
sooner, and the natural light emitted by the sun is much lower. Hence, the validation
only applies to a (short) timeframe after the initial measurement period.

In conclusion, the developed prediction model sufficiently approximates the original
brightness (graphs). Compared to the original brightness measurements, it exhibits an
MSE (Mean Squared Error) of 29.422 and an MSLE (Mean Squared Logarithmic Error)
of 0.081. Given these metrics and just by looking at Figure 7.7, one can make out some
inaccuracies, which, however, do not impede the approximation function’s/prediction
model’s meaningfulness, as humans are unlikely to notice minor brightness differences.
Therefore, slight deviations in the approximation by the prediction model relative to the
ground truth (represented by the measurements) are negligible, at least for this scenario.
Nonetheless, prediction models should be thoroughly validated and evaluated in more
detail, especially regarding the question of how accurate the approximation needs to be
and how accurate it actually is before deploying them with FooSH. As described previ-
ously, the developed prediction model struggles with approximating seasonal data. In
general, the biggest challenges for prediction models that deal with smart home sensor
data seem to be capturing and imitating the degree of seasonality or periodicity, as vari-
ous factors are time-, weather-, or season-dependent. Additionally, the proof of concept
shows deficits regarding adaptability to new circumstances, like changes in the smart
home setup. Looking at the literature, FooSH is not the only goal-oriented approach
that deals with the challenge of the smart home’s flexibility.

61

Chapter 7 Evaluation

7.2 Discussion

In the following discussion, we first cover and discuss how and to which extent the re-
search questions introduced in Section 2.3 were answered. Then, FooSH’s limitations and
drawbacks when deploying in a real-world scenario are highlighted and finally compared
to similar approaches from Chapter 3.

7.2.1 Research Questions

(RQ 1) How to deal with and connect to a wide variety of smart home systems?

As described during the initial solution proposal in Chapter 5, the prototype is designed
so that it docks onto the existing smart home without it noticing. Deploying FooSH does
not disturb the running system and does not require any alterations or modifications of
the existing smart home system. If successfully integrated into the smart home, FooSH
provides several interfaces to retrieve the smart home’s device information and execute
commands, essentially giving the user the possibility to control smart devices with FooSH
as a proxy. The provided (Java) interfaces (see Section 6.3 for further details) ensure
that FooSH has access to all the integral information for its proper operation (list of
smart devices and the capability to alter the smart home’s state, i.e., controlling a
smart device). They additionally present the developer with nearly total freedom for
tailoring them to their individual needs and ensuring their compatibility with, in theory,
every smart home system6.

Different smart homes have different ways of representing a smart device. To accommo-
date the various device representations, FooSH has an AbstractDevice class that includes
the necessary information for every device and provides a uniform interface with func-
tions to access its data. Implementing a class that inherits the AbstractDevice class
forms the base for further adaptions, depending on the developer’s and the system’s
needs (see Section 7.1.4 for an exemplary implementation of a custom device class).

One can say, based on the preceding measures implemented by FooSH, that the exact
type of connection to the extant smart home is left to the developer, as FooSH merely
administers the environment by defining indispensable functions. This environment
guarantees the incorporation of FooSH in the smart home system without interfering
with or restricting either the smart home’s or FooSH’s operability and functionality.
FooSH’s operability and other software qualities are evaluated in great detail in the
following section dealing with research question RQ 3.

6It is debatable whether FooSH can be used within any smart home. Further tests or studies are
required.

62

7.2 Discussion

(RQ 2) How to deal with and allow incorporation of different prediction models?

The developed prototype allows the incorporation of pre-trained and ready-to-use pre-
diction models, which can utilize an arbitrary prediction technique, determining a smart
home configuration that achieves a specific environment variable value. Here, the only
requirement for a prediction model is to eventually return a sequence of smart home
instructions (which could be empty) that change the smart home’s state and its devices,
ultimately reaching the previously determined smart home configuration and achieving
the desired goal.

FooSH provides features to theoretically link multiple variables to one prediction model.
As discussed before, it may seem unreasonable to use one prediction model for different
environment variables. At last, the user is left with the decision to make use of this
feature since, in some scenarios, they possibly still want to employ it. This way, FooSH
aims to improve its reusability and interoperability of components (here: prediction
models and variables) without restricting the user and their potential intentions and
needs.

The requirements for a solution (stated in Section 2.2) also have the objective of dealing
with and solving potential conflicts between prediction methods or, to be more exact,
between their respective prediction-making and the resulting smart home configurations.
FooSH has no explicit measures to mediate or solve said conflicts. Instead, it processes
multiple prediction requests sequentially. This way, two (or more) prediction processes
can not directly interfere with each other, and a prediction request is handled based on
the configuration induced by the previous one. Thus, the responsibility for dealing with
conflicts is transferred to the user, increasing the user’s cognitive load and consequently
restraining the user experience. These impediments contrast with the actual goals of
smart homes: improving comfortability and being convenient.

In summary, the prototype maintains features for including various prediction mod-
els and linking them to environment variables. They can then be used to determine
a smart home configuration that achieves a certain user-defined environment variable
value. These features can be used flexibly, and their implementations make them open
for future adjustments or extensions. However, there is still a need for improving con-
flict resolution to sustainably support the user experience and allow for sophisticated
handling of potentially conflicting variable goals.

(RQ 3) Which software qualities are crucial for developing a sustainable and useful
solution? What can be done to accomplish and enforce selected software qualities?

Multiple SQMs were presented in Chapter 4, from which ISO/IEC 9126 seems to be a
promising software quality model but as ISO/IEC 25010 is its revised successor, we will
choose the former as the software quality model for this thesis. Despite the critique of

63

Chapter 7 Evaluation

Boehm, we stick to our decision of choosing ISO/IEC 25010. Additionally, the restricted
access and low popularity of SQOTA do not meet our requirements for a software quality
model, and it is therefore not an option.

In addition to narrowing it down to primarily only considering one model, we further
want to point out the relevant quality attributes of the quality product model for this
work. Considering that the framework only connects the smart home with a prediction
model, provides a REST API (see Section 6.2 for more architectural details), and is the
result of the first step of becoming a sophisticated framework for outcome-oriented smart
home systems, we want to omit the qualities performance efficiency and security.

In the following, FooSH is evaluated individually regarding every quality defined by
ISO/IEC 25010, including the additional quality scalability. But since it was developed
as a prototypical framework that shall be extended by other software engineers and
smart home enthusiasts, we are paying more attention and devoting more time to the
product quality attributes and only succinctly discuss the quality in use attributes.

Functional Suitability The functional suitability was thoroughly covered in the preced-
ing section. It showed that the developed prototype fulfills the goals defined in
Section 2.2 by providing a selection of implementable interfaces to connect to the
existing smart home system, and its architecture allows developers to assimilate
various prediction models.

Performance Efficiency The individual implementation(s) of the prediction model(s)
are the crucial parts concerning performance efficiency and are not part of the
framework itself. They are developed and inserted by the developer who uses the
framework and consequently outside our control and this evaluation. However,
since FooSH itself is built with Spring which naturally pays close attention to
performance, it also exhibits a similarly high degree of all-round performance [59].

Compatibility Due to its nature of being an extension, FooSH does not interfere with
the existing smart home system and only extends and utilizes already available
smart home services. Hence, it is able to co-exist with other (software) systems.
Additionally, FooSH’s RESTful web API allows other programs and users to access
its functionalities, and the generalized smart home interfaces also strengthen the
overall interoperability with external systems.

Usability FooSH’s code base is thoroughly documented, supplying (new) developers with
detailed descriptions of how FooSH works internally and can be used. Both the
popularity of REST and the information provided by HATEOAS help counteract
the initial hurdle of starting with FooSH. The simplicity of and familiarity with
the CRUD operations (except for JSON Patch), likely originating from interacting
and using other web APIs, further constitutes the prototype’s overall operability.
If the developer is unfamiliar with web APIs or is inexperienced in working with
RESTful APIs, the error handling presented in Section 6.3.2 ensures sufficient user
error protection. To aid the prevention of inducing further errors, future work on

64

7.2 Discussion

the prototype should address the missing Problem Detail error descriptions (con-
tained in field type and discussed in Section 6.3.2), consequently offering detailed
descriptions and potential causes for a raised exception/error.

Reliability Based on the following various factors, the reliability of FooSH comes out to
be quite sophisticated. FooSH’s fault tolerance is supported by the expansive er-
ror handling capabilities described in Section 6.3.2 and validated by the extensive
test suite depicted in Section 6.3.3. Not permanently deleting, e.g., a device list
from FooSH’s persistent storage, but instead keeping it around for later recovery
positively impacts the recoverability and allows a user to restore (falsely) deleted
data. The same is true for the use of JSON Patch, as erroneous JSON Patch docu-
ments are validated before execution and, if necessary, the safe state of a resource
is re-established. In case some exceptions are not covered by the prototype’s error
handling, Spring tries to ensure the application’s fault tolerance and availability
with its internal workings that also detect errors and act accordingly by sending
error responses to the client without sacrificing the overall reliability.

Security Mainly due to time constraints, features and mechanisms to accommodate
security were considered out of scope for this thesis. Nonetheless, security is es-
pecially crucial in the context of smart home systems as the user’s privacy and
data need to be protected. It therefore has to be addressed in future matters when
working with and expanding FooSH.

Maintainability Different factors play into the evaluation of the maintainability charac-
teristic. Because of this, Table 7.3 gives a brief overview of said factors in regard to
the sub-characteristics they influence the most. The separation of concerns and the
demarcation between components induced by REST’s layered constraint as well
as the MVCS architectural pattern benefits all sub-characteristics and the main-
tainability as a whole. The second REST constraint that improves the software’s
maintainability is the uniform interface constraint, as it, based on its unitary (web)
interface, allows for fast and straightforward modifications along with simplifying
its analysability and testability. In addition, the implementation details discussed
in Section 6.3 also show that the implemented (abstract) classes and Java inter-
faces make easy reuse and adaption possible. Moreover, the centralized exception
handling presented in Section 6.3.2 simplifies and ultimately enhances FooSH’s
analysability and modifiability since it is all in one place, similarly designed and
built. Lastly, Spring provides mechanisms to effectively test the developed web API
and ordinary code using the popular testing framework JUnit. As Section 6.3.3
showed, every API endpoint was successfully tested, and further code was cov-
ered by standard unit tests. We presume that the not yet tested parts could, if
necessary, also be easily tested.

Portability FooSH’s adaptability leaves something to be desired, for when the smart
home hardware changes (e.g., adding a new smart light), existing prediction models
need to be re-trained/re-generated using newly collected usage data. With the
current design, the prototype does not know about any changes occurring in the

65

Chapter 7 Evaluation

Table 7.3: Factors affecting FooSH’s maintainability

Modu-
larity

Reus-
ability

Analys-
ability

Modifi-
ability

Test-
ability

REST layered constraint / MVCS ✓ ✓ ✓ ✓ ✓
REST uniform interface constraint ✓ ✓ ✓
FooSH implementation details ✓ ✓
Spring/FooSH error management ✓ ✓
Spring/Java tests ✓

smart home without manually fetching the device list. It is assumed that if someone
fancies installing and using FooSH, a working smart home system is already set up.
The only two prerequisites left to fulfill to successfully install and ultimately utilize
FooSH are to (1) provide a platform that is capable of running the Java application
and (2) set up at least one prediction model. Depending on the previously employed
system, it should be relatively easy to replace an existing software solution with
FooSH as it does not interfere with the smart home system. Additionally, based on
its properties for providing a web API, its interface controls are straightforward,
easy to understand and interact with. Furthermore, FooSH exhibits significant
potential for the range of possible areas of application (see Chapter 5), rendering
it deployable not only for smart homes but for various use cases.

Scalability The choice of the REST architecture and RESTful web API promotes the
scalability of the developed system since the imposed constraints considerably em-
phasize scalability [14]. Spring also offers various mechanics and best practices to
support scaling Spring Boot applications and associated software [44].

Effectiveness The prototype allows for querying prediction requests, but it has no direct
influence on their results since the results heavily depend on the employed predic-
tion model. Additionally, FooSH provides interfaces for executing a sequence of
smart home instructions, realizing the generated smart home configuration, and
achieving the initial goal value. Nonetheless, the generation/prediction process still
lies outside the prototype’s scope. Consequently, its effectiveness cannot reliably
be determined without an explicit prediction model on hand. The framework’s
effectiveness therefore significantly depends on the use case, i.e., the utilized pre-
diction model.

Efficiency Determining a product’s efficiency sets its effectiveness in relation to the
needed resources. Thus, the same limitations for ascertaining the effectiveness
also apply to the efficiency. However, if the prototype’s software qualities are
evaluated regarding a specific use case, the following factors could be considered
as resources: the time it takes to carry out the prediction, consumed hardware and

66

7.2 Discussion

software resources, the number of required user interactions to reach a goal, or the
cognitive load of the user, i.e., how much does the user have to think about the
correct way for achieving their goal.

Satisfaction, Freedom of Risk, Context Coverage To be able to reasonably assess the
degree of satisfaction, freedom of risk, and context coverage, further studies and
use cases are needed. That is because, as the name Quality of Use suggests, one
needs actual developer and user feedback for a proper evaluation. Therefore, it is
advisable to let other developers employ and integrate FooSH into real-world smart
home systems. With the help of their experiences and collected user feedback, one
should be able to make meaningful statements regarding the foregoing software
qualities. Until then, the question of the qualities’ sophistication unfortunately
has to be postponed.

Since software qualities are not the only factor playing a role in determining if a software
product is sustainable or usable, we also want to evaluate FooSH’s maturity regarding
its web API. We think this is another relevant point for the overarching evaluation as
a badly implemented web, or in this case, RESTful API negatively affects the entire
product’s sustainability and usability. For this reason, we want to classify the imple-
mented RESTful API that was described in Section 6.3.1 using the WS3 Maturity Model
to primarily assess its maturity (which gives a good indication of its sustainability and
usability) but also to create better and more accurate comparability with other or future
approaches. As described in Chapter 4 (and depicted in Figure 3.4), the WS3 Maturity
Model uses three dimensions for classifying a web API, which, in the case of FooSH,
leads to a categorization of D4-S2-P1.

For the first dimension - the design dimension - the prototype fulfills its requirements
for the fourth level as they are analogous to the Richardson Maturity Model in which
FooSH’s web API reaches the fourth and highest maturity level. That is the case, as the
API, as thoroughly described in Section 6.2 and Section 6.3, exhibits all the necessary
properties. For one, it uses more than a single URI since it manages various resources
with distinct API endpoints (Level 0, Level 1), and allowing the client to call it using
any HTTP method (Level 2). Moreover, with the implementation of HATEOAS and
providing hypermedia controls, the API satisfies the preliminaries for Level 3.

The implemented REST API or, to be more exact, the HATEOAS messages not only
semantically describe each resource data by the nature of JSON documents but also the
resource’s relationships with the provided link blocks in each response, as described in
Section 6.3.1. Thus, FooSH fulfills the prerequisites for the maximum Semantic Dimen-
sion: Linked Data.

In contrast, FooSH only reaches the first level of the Profile Dimension (Interaction
Profile) since the link blocks provided by the API’s HATEOAS messages include a
description regarding every available option, such as HTTP methods or accepted media
types (see Section 6.3.1 for more details on the implementation of HATEOAS and its

67

Chapter 7 Evaluation

usage in FooSH). However, the API does not provide any instructions in what order calls
need to be done to, for example, rename an environment variable nor describe pre- or
post-conditions for the different features.

7.2.2 Limitations

Looking at the prototype’s architecture, its implementation, and the preceding evalua-
tion of the research questions, a few limitations and restrictions arise when deploying
FooSH in a real-world system. The following list contains the most impactful and re-
stricting limitations and drawbacks.

(L1) FooSH is a framework intended to be used as an extension for an existing smart
home. Because it is a framework, it still needs to be programmatically integrated
and configured by other developers or smart home enthusiasts. Thus, it is un-
suitable for out-of-the-box deployment and requires a somewhat technically skilled
person to be set up.

(L2) As of now, the prototype provides no features for creating or training prediction
models during runtime. It is only capable of working with already pre-trained
and implemented prediction models. This limitation can be explained by the fact
that smart homes are considered part of the IoT domain, where computationally
limited hardware is most commonly deployed. It is therefore not advisable to
use this hardware, for example, to train a CNN, which should then be part of a
prediction model.

(L3) The current state of the framework does not allow for considering home automa-
tions that might interfere or aid with reaching a user-specified environment vari-
able value. FooSH only takes into account the smart devices “as they are” and
disregards any automations or (time-based) rules.

(L4) As discussed during the software quality evaluation, FooSH lags in terms of adapt-
ability. In case something changes inside the smart home, e.g., if a smart device
is added or removed, the integrity of a prediction model or environment variable
cannot be guaranteed as an originally relevant device could be removed, unbe-
known to FooSH. Even if such a change is detected, both the affected environment
variable(s) and the prediction model(s) must be adapted accordingly. Looking at
(L2), this cannot be done during runtime, as the prediction model might need
some form of re-training or similar modifications.

(L5) If a prediction model produces a smart home configuration and the corresponding
instructions, the user has, except for toggling the execute flag, no opportunity to
give feedback or react to the result. They consequently cannot influence or adapt
the prediction model’s outcome in a reliable or user-friendly way.

68

7.2 Discussion

7.2.3 Comparison to Related Work

The creators of the ACHE system [32] probably also recognized the problem of simulating
or predicting the entire smart home environment, including its external factors, for which
they, equally to FooSH, distinguish between different application domains (environment
variables), effectively subdividing the aforementioned problem. Both approaches also
require re-training if the smart home setup changes, as they depend on pre-configured
policies or prediction models. However, FooSH does not restrict its users to use one of
the policies, or in this case, prediction models. Instead, it allows for any model to be
integrated and used to reach a specific environment variable value.

With Sasha [27], King et al. introduced a sophisticated and flexible framework for smart
home assistants, especially concerning its engaging feedback loop. Unfortunately, it also
limits its use cases as it is purely developed with vocal interactions and its role as a voice
assistant in mind. Additionally, unlike FooSH, it does not provide a universal interface
by which it could be integrated into and employed in even more contexts. We nonetheless
need to admit that Sasha’s weakness concerning compatibility, induced by its restrictions
as an NLP-using voice assistant, is simultaneously one of its advantages over FooSH, as
it can handle natural language instructions (coming from the smart home user). On
the contrary, FooSH can only work with discrete and factual instructions, such as ”Set
Brightness to 80%,” and fails to comprehend or even accept instructions like ”Help
me wake up.” Looking at (L5), one could use the authors’ approach for allowing user-
induced feedback as inspiration for adding feedback features for FooSH - eliminating a
major limitation regarding FooSH’s usability and user-friendliness.

With DGOC, Palanca et al. introduce a quite complex and invested to set up, goal-
oriented architecture for smart homes. This complexity might stem from their intentions
of transforming their system into a working operating system. Another factor might be
the need to define all the agents together with their services and plans, and link them
to the physical (smart) devices. The need to provide (and implement) functionalities
for extracting and detecting the goal from possibly colloquial user interactions, as their
approach assumes that the already extracted goal is used as its input, plays another vital
role in that context. Looking at it this way, FooSH provides a more user-friendly system
that is more straightforward to set up. With its lack of adaptability described in (L4),
FooSH lags behind the DGOC architecture as it is capable of reconfiguring and adapting
itself to different circumstances, like removing or adding smart devices. Unfortunately,
the paper does not go into detail on how this self-adaptability is reached, necessitating
further research into this topic.

The declarative programming approach by Bisicchia et al. [7] presents a promising
solution for the challenge of solving conflicts between multiple goals and their respective
solution ”plans.” This approach exhibits sophisticated principles with which it is able
to deal with conflicts way more efficiently than FooSH. FooSH only avoids said conflicts

69

Chapter 7 Evaluation

by processing them sequentially, essentially alleviating potential discrepancies, whereas
their framework approaches it by using mediation policies to find a satisfying solution
for all parties. Therefore, it should be considered to integrate Bissichia’s framework into
FooSH to make use of the provided conflict resolution, consequently transforming FooSH
to be more resilient and user-friendly.

In summary, one can say that although FooSH shows some limitations and deficits, it still
deals with and answers all research questions appropriately, contributing to the current
status quo of smart home research. Contrasting the presented related work, FooSH
allows the integration of arbitrary methods, be it machine learning methods, methods
based on artificial intelligence models, or service-oriented selection mechanisms (as in
[36]). Additionally, the related literature mostly uses their various ”prediction” methods
to primarily mediate between or find a fitting execution plan instead of using observed
user behavior. FooSH therefore makes use of data that does not need to be explicitly
generated, making the manual work of filling some form of knowledge base obsolete.

70

Chapter 8

Conclusion

We set out to design, create, and implement a software product that fills the current
gap in universally applicable goal-oriented smart home systems to bring back the initial
user-centric goals of comfortability and convenience. For this reason, a prototype was
developed that fulfills the requirements for a sustainable and long-lasting goal-oriented
smart home framework by exhibiting distinctive software qualities while paving the path
for future extensions and modifications. It also showed that the design decisions and
its architecture, especially the implemented interfaces, allow developers to integrate the
framework into the majority of state-of-the-art smart home systems and use FooSH with
an arbitrary prediction method, i.e., goal-resolution mechanism. We constructed a proof
of concept that demonstrates FooSH’s ability to be deployed into an existing smart home
system as well as the simplicity with which new prediction models can be incorporated
and utilized.

Even though the prototype has a few limitations and imposes some restrictions regarding
its adaptability to changes in the smart home, the current state of the framework can,
nonetheless, be seen as a successful attempt to contribute to the current research field
of smart homes. It represents a good starting point for further research and expansion
to further improve the user experience and satisfaction with smart homes.

8.1 Future Work

A possible approach to remove the limitations described in (L2) could introduce a feature
set that allows clients to create and, if necessary, train prediction models during run-
time. One would need to investigate in more detail whether the local hardware suffices
for potentially complex and resource-intensive operations or if outsourcing the training
process to a cloud service, for example, would yield satisfying results while exonerating
the native system.

Being one of the major weaknesses, the goal of increasing the framework’s adaptability
is self-explanatory. Consequently, one could try to integrate adaptability-improving
features from the related work and evaluate whether they actually improve FooSH’s

71

Chapter 8 Conclusion

adaptability or if further research needs to be done and new mechanisms need to be
developed.

Implementing a user feedback loop poses another interesting starting point for further
improvements of the framework, as the user can now actively influence and correct the
computed smart home configuration and instructions. The work of King et al. [27] could
be used as inspiration as it already introduced a sophisticated and evaluated interaction
cycle that allows the smart home user to interact with the system, taking initiative in
influencing the process of achieving the user goals.

Security is a crucial factor in smart homes as it deals with sensitive user data, pointing
out the importance of data privacy and protection. Since security aspects were omitted
for now, one of the next steps in expanding FooSH should be to implement and consider
security measures to protect smart home users and their data. It should not be possible
for unauthorized parties to, for example, access the smart home details, and they should
not be able to cause changes in the smart home or control smart devices. Because of
this, one should research viable options and evaluate whether they apply to the smart
home context without negatively affecting the user experience.

72

Appendix A

REST API Endpoints

Table A.1: List of REST API entpoints for route /api/devices/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

/api/devices/

GET Retrieve the list of smart
home devices.

- ∗ 200 OK

POST Fetch the list of registered
smart devices from the smart
home API.

- application/json 201 CREATED

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

502 BAD GATEWAY

504 GATEWAY TIMEOUT

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

PATCH Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

DELETE Delete the local list of smart
home devices.

- ∗ 200 OK

500 INTERNAL SERVER ERROR
...

...
...

...
...73

A
p
p
en

d
ix

A
R
E
S
T

A
P
I
E
n
d
p
o
in
ts

Table A.1: List of REST API entpoints for route /api/devices/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

/api/devices/{id}

GET Retrieve the smart home de-
vice with the ID or name id.

- ∗ 200 OK

404 NOT FOUND

POST Method is not allowed. - ∗ 404 NOT FOUND

405 METHOD NOT ALLOWED

PUT Method is not allowed. - ∗ 404 NOT FOUND

405 METHOD NOT ALLOWED

PATCH Change the name of a device
using a Json Patch Document.

- application/json-

patch+json

200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

DELETE Method is not allowed. - ∗ 404 NOT FOUND

405 METHOD NOT ALLOWED

7
4

Table A.2: List of REST API entpoints for route /api/vars/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

/api/vars/

GET Retrieve the list of defined
smart home variables.

- ∗ 200 OK

POST Create and name a/multiple
new smart home variable(s).

batch=true|false application/json 201 CREATED

400 BAD REQUEST

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

PATCH Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

DELETE Delete the list of defined smart
home variables.

- ∗ 200 OK

500 INTERNAL SERVER ERROR

/api/vars/{id}

GET Retrieve the smart home vari-
able with the ID or name id.

- ∗ 200 OK

404 NOT FOUND

POST Generate (and execute) a set
of smart home instructions to
reach a given value for the
variable with the ID or name
id.

- application/json 200 OK

400 BAD REQUEST

404 NOT FOUND

415 UNSUPPORTED MEDIATYPE

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED
...

...
...

...
...

75

A
p
p
en

d
ix

A
R
E
S
T

A
P
I
E
n
d
p
o
in
ts

Table A.2: List of REST API entpoints for route /api/vars/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

PATCH Change the name of the vari-
able with the ID id using a
Json Patch Document.

- application/json-

patch+json

200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

DELETE Delete the variable and all its
links with other things with
the ID or name id.

- ∗ 200 OK

404 NOT FOUND

500 INTERNAL SERVER ERROR

/api/vars/{id}/devices/

GET Retrieve the list of smart
home devices that are linked
to the smart home variable
with the ID or name id.

- ∗ 200 OK

404 NOT FOUND

POST Link a list of devices to the
variable with the ID or name
id.

- application/json 200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED
...

...
...

...
...

7
6

Table A.2: List of REST API entpoints for route /api/vars/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

PATCH Modify the list of linked de-
vices for the variable with the
ID id using a Json Patch Doc-
ument.

- application/json-

patch+json

200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

DELETE Delete the list of devices that
are linked to the variable with
the ID or name id.

- ∗ 200 OK

404 NOT FOUND

500 INTERNAL SERVER ERROR

/api/vars/{id}/models/

GET Retrieve the list of linked pre-
diction models to the smart
home variable with the ID or
name id.

- ∗ 200 OK

404 NOT FOUND

POST Link a prediction model to the
variable with the ID or name
id.

- application/json 200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED
...

...
...

...
...

77

A
p
p
en

d
ix

A
R
E
S
T

A
P
I
E
n
d
p
o
in
ts

Table A.2: List of REST API entpoints for route /api/vars/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

PATCH Modify the list of linked pre-
diction models for the variable
with the ID id using a Json
Patch Document.

- application/json-

patch+json

200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

DELETE Delete the list of prediction
models that are linked to the
variable with the ID or name
id.

- ∗ 200 OK

404 NOT FOUND

500 INTERNAL SERVER ERROR

7
8

Table A.3: List of REST API entpoints for route /api/models/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

/api/models/

GET Retrieve the list of pre-defined
prediction models.

- ∗ 200 OK

POST Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

PATCH Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

DELETE Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

/api/models/{id}

GET Retrieve the prediction model
with the ID or name id.

- ∗ 200 OK

404 NOT FOUND

POST Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

PATCH Change the name of the pre-
diction model with the ID id

using a Json Patch Document.

- application/json-

patch+json

200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

DELETE Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

...
...

...
...

...

79

A
p
p
en

d
ix

A
R
E
S
T

A
P
I
E
n
d
p
o
in
ts

Table A.3: List of REST API entpoints for route /api/models/...

Method Description Header field(s) Accepted
Mediatype

Response Code(s)

/api/models/{id}/mappings/

GET Retrieve the list of parame-
ter mappings and linked smart
home variables for the pre-
diction model with the ID or
name id.

- ∗ 200 OK

404 NOT FOUND

POST Link a variable with corre-
sponding parameter mappings
to the prediction model with
the ID or name id.

- application/json 200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

PUT Method is not allowed. - ∗ 405 METHOD NOT ALLOWED

PATCH Change one or multiple pa-
rameter mappings and linked
variables using a Json Patch
Document.

- application/json-

patch+json

200 OK

400 BAD REQUEST

404 NOT FOUND

409 CONFLICT

415 UNSUPPORTED MEDIATYPE

500 INTERNAL SERVER ERROR

DELETE Delete the list of parameter
mappings and variables that
are linked to the prediciton
model with the ID or name id.

- ∗ 200 OK

404 NOT FOUND

500 INTERNAL SERVER ERROR

8
0

Appendix B

ISO/IEC 25010 Software Quality
Descriptions

Table B.1: Product Quality [53]

(Sub-)Characteristic Description

Functional Suitability
Functional Completeness The degree to which the set of functions covers all the

specified tasks and user objectives
Functional Correctness The degree to which a product or system provides the

correct results with the needed degree of precision.
Functional
Appropriateness

The degree to which the functions facilitate the accom-
plishment of specified tasks and objectives.

Performance Efficiency
Time
Behaviour

The degree to which the response and processing times
and throughput rates of a product or system, when per-
forming its functions, meet requirements.

Resource
Utilization

The degree to which the amounts and types of resources
used by a product or system, when performing its func-
tions, meet requirements.

Capacity The degree to which the maximum limits of a product
or system parameter meet requirements.

Compatibility
Co-existence The degree to which a product can perform its required

functions efficiently while sharing a common environ-
ment and resources with other products, without detri-
mental impact on any other product.

Interoperability The degree to which two or more systems, products or
components can exchange information and use the infor-
mation that has been exchanged.

...
...

81

Appendix B ISO/IEC 25010 Software Quality Descriptions

Table B.1: Product Quality [53]

(Sub-)Characteristic Description

Usability
Appropriateness
Recognizability

The degree to which users can recognize whether a prod-
uct or system is appropriate for their needs.

Learnability The degree to which a product or system can be used by
specified users to achieve specified goals of learning to
use the product or system with effectiveness, efficiency,
freedom from risk and satisfaction in a specified context
of use.

Operability The degree to which a product or system has attributes
that make it easy to operate and control.

User Error Protection The degree to which a system protects users against mak-
ing errors.

User Interface Aesthetics The degree to which a user interface enables pleasing and
satisfying interaction for the user.

Accessibility The degree to which a product or system can be used by
people with the widest range of characteristics and capa-
bilities to achieve a specified goal in a specified context
of use.

Reliability
Maturity The degree to which a system, product or component

meets needs for reliability under normal operation.
Availability The degree to which a system, product or component is

operational and accessible when required for use.
Fault Tolerance The degree to which a system, product or component

operates as intended despite the presence of hardware or
software faults.

Recoverability The degree to which, in the event of an interruption or a
failure, a product or system can recover the data directly
affected and re-establish the desired state of the system.

Security
Confidentiality The degree to which a product or system ensures that

data are accessible only to those authorized to have ac-
cess.

Integrity The degree to which a system, product or component
prevents unauthorized access to, or modification of, com-
puter programs or data.

...
...

82

Table B.1: Product Quality [53]

(Sub-)Characteristic Description

Non-reudiation The degree to which actions or events can be proven to
have taken place so that the events or actions cannot be
repudiated later.

Accountability The degree to which the actions of an entity can be
traced uniquely to the entity.

Authenticity The degree to which the identity of a subject or resource
can be proved to be the one claimed.

Maintainability
Modularity The degree to which a system or computer program is

composed of discrete components such that a change
to one component has minimal impact on other com-
ponents.

Reusability The degree to which an asset can be used in more than
one system, or in building other assets.

Analysability The degree of effectiveness and efficiency with which it
is possible to assess the impact on a product or system
of an intended change to one or more of its parts, or to
diagnose a product for deficiencies or causes of failures,
or to identify parts to be modified.

Modifiability The degree to which a product or system can be effec-
tively and efficiently modified without introducing de-
fects or degrading existing product quality.

Testability The degree of effectiveness and efficiency with which test
criteria can be established for a system, product or com-
ponent and tests can be performed to determine whether
those criteria have been met.

Portability
Adaptability The degree to which a product or system can effectively

and efficiently be adapted for different or evolving hard-
ware, software or other operational or usage environ-
ments.

Installability The degree of effectiveness and efficiency with which a
product or system can be successfully installed and/or
uninstalled in a specified environment.

Replaceability The degree to which a product can replace another spec-
ified software product for the same purpose in the same
environment.

83

Appendix B ISO/IEC 25010 Software Quality Descriptions

Table B.2: Quality in Use [53]

(Sub-)Characteristic Description

Effectiveness The accuracy and completeness with which users achieve
specified goals.

Efficiency The resources expended in relation to the accuracy and
completeness with which users achieve goals.

Satisfaction
Usefulness The degree to which a user is satisfied with their per-

ceived achievement of pragmatic goals, including the re-
sults of use and the consequences of use.

Trust The degree to which a user or other stakeholder has con-
fidence that a product or system will behave as intended.

Pleasure The degree to which a user obtains pleasure from fulfill-
ing their personal needs.

Comfort The degree to which the user is satisfied with physical
comfort.

Freedom from Risk
Economic Risk Mitigation The degree to which a product or system mitigates the

potential risk to financial status, efficient operation, com-
mercial property, reputation or other resources in the
intended contexts of use.

Health and Safety Risk
Mitigation

The degree to which a product or system mitigates the
potential risk to people in the intended contexts of use.

Environmental Risk
Mitigation

The degree to which a product or system mitigates the
potential risk to property or the environment in the in-
tended contexts of use.

Context Coverage
Context Completeness The degree to which a product or system can be used

with effectiveness, efficiency, freedom from risk and sat-
isfaction in all the specified contexts of use.

Flexibility The degree to which a product or system can be used
with effectiveness, efficiency, freedom from risk and sat-
isfaction in contexts beyond those initially specified in
the requirements.

84

Bibliography

[1] 2021 State of the API Report — API Technologies. 2021. url: https://www.
postman.com/state-of-api/2021/api-technologies/ (visited on 09/13/2023).

[2] 2023 State of the API Report — API Technologies. 2023. url: https://www.
postman.com/state-of-api/api-technologies/ (visited on 09/13/2023).

[3] Sultan Almuhammadi and Majeed Alsaleh. “Information Security Maturity Model
for Nist Cyber Security Framework”. In: Computer Science & Information Tech-
nology (CS & IT). Academy & Industry Research Collaboration Center (AIRCC),
Feb. 2017, pp. 51–62. isbn: 978-1-921987-62-5. doi: 10.5121/csit.2017.70305.

[4] Amazon Web Services, Inc. RPC vs REST - Difference Between API Architectures
- AWS. url: https://aws.amazon.com/compare/the-difference-between-
rpc-and-rest/ (visited on 09/15/2023).

[5] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
2. ed., 1. print. SEI Series in Software Engineering. Addison-Wesley, 2003. isbn:
978-0-321-15495-8.

[6] Kang Bing et al. “Design of an Internet of Things-based smart home system”. In:
2011 2nd International Conference on Intelligent Control and Information Pro-
cessing. Vol. 2. 2011, pp. 921–924. doi: 10.1109/ICICIP.2011.6008384.

[7] Giuseppe Bisicchia, Stefano Forti, and Antonio Brogi. A Declarative Goal-oriented
Framework for Smart Environments with LPaaS. June 2021. doi: 10 . 48550 /
arXiv.2106.13083. eprint: 2106.13083 (cs, eess). (Visited on 11/08/2023).

[8] B W Boehm, J R Brown, and M Lipow. “Quantitative Evaluation of Software
Quality”. In: Proceedings of the 2nd International Conference of Software Engi-
neering, 1976.

[9] Barry Boehm. “Improving and Balancing Software Qualities”. In: Proceedings of
the 38th International Conference on Software Engineering Companion. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, May 2016, pp. 890–
891. isbn: 978-1-4503-4205-6. doi: 10.1145/2889160.2891049. (Visited on 09/04/2023).

[10] Roberta Calegari et al. “Logic Programming as a Service (LPaaS): Intelligence for
the IoT”. In: 2017 IEEE 14th International Conference on Networking, Sensing
and Control (ICNSC). 2017, pp. 72–77. doi: 10.1109/ICNSC.2017.8000070.

85

https://www.postman.com/state-of-api/2021/api-technologies/
https://www.postman.com/state-of-api/2021/api-technologies/
https://www.postman.com/state-of-api/api-technologies/
https://www.postman.com/state-of-api/api-technologies/
https://doi.org/10.5121/csit.2017.70305
https://aws.amazon.com/compare/the-difference-between-rpc-and-rest/
https://aws.amazon.com/compare/the-difference-between-rpc-and-rest/
https://doi.org/10.1109/ICICIP.2011.6008384
https://doi.org/10.48550/arXiv.2106.13083
https://doi.org/10.48550/arXiv.2106.13083
2106.13083
https://doi.org/10.1145/2889160.2891049
https://doi.org/10.1109/ICNSC.2017.8000070

Bibliography

[11] Joseph P. Cavano and James A. McCall. “A Framework for the Measurement of
Software Quality”. In: Proceedings of the Software Quality Assurance Workshop on
Functional and Performance Issues -. Not Known: ACM Press, 1978, pp. 133–139.
doi: 10.1145/800283.811113.

[12] Chien-Tsun Chen et al. “Exception Handling Refactorings: Directed by Goals and
Driven by Bug Fixing”. In: Journal of Systems and Software 82.2 (Feb. 2009),
pp. 333–345. issn: 0164-1212. doi: 10.1016/j.jss.2008.06.035. (Visited on
10/27/2023).

[13] Steven J. Drew and K. John Gough. “Exception Handling: Expecting the Unex-
pected”. In: Computer Languages 20.2 (May 1994), pp. 69–87. issn: 0096-0551.
doi: 10.1016/0096-0551(94)90015-9. (Visited on 10/27/2023).

[14] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based Soft-
ware Architectures”. PhD thesis. Irvine: University of California, 2000.

[15] Martin Fowler. Richardson Maturity Model. Mar. 2010. url: https://martinfowler.
com/articles/richardsonMaturityModel.html (visited on 08/31/2023).

[16] Tamas Galli, Francisco Chiclana, and Francois Siewe. “Software Product Quality
Models, Developments, Trends, and Evaluation”. In: SN Computer Science 1.3
(May 2020), p. 24. issn: 2661-8907. doi: 10.1007/s42979-020-00140-z.

[17] Taqiyah Khadijah Ghazali and Nur Haryani Zakaria. “Security, comfort, health-
care, and energy saving: A review on biometric factors for smart home environ-
ment”. In: Journal of Computers 29.1 (2018), pp. 189–208.

[18] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software En-
gineering. 2. ed., internat. ed. Upper Saddle River, NJ: Prentice Hall, Pearson
Education, 2003. isbn: 978-0-13-099183-6.

[19] HATEOAS. url: https://en.wikipedia.org/wiki/HATEOAS (visited on 11/06/2023).

[20] James Herbsleb et al. “Software Quality and the Capability Maturity Model”.
In: Communications of the ACM 40.6 (June 1997), pp. 30–40. issn: 0001-0782,
1557-7317. doi: 10.1145/255656.255692.

[21] J.R. Horgan, S. London, and M.R. Lyu. “Achieving software quality with testing
coverage measures”. In: Computer 27.9 (1994), pp. 60–69. issn: 1558-0814. doi:
10.1109/2.312032.

[22] Chin Yun Hsieh et al. “Identification and Refactoring of Exception Handling Code
Smells in Javascript”. In: Journal of Internet Technology 18.6 (2017), pp. 1461–
1471. issn: 1607-9264. doi: 10.6138/JIT.2017.18.6.20160118. (Visited on
10/27/2023).

[23] Hypertext Transfer Protocol – HTTP/1.1. Standard RFC 2616. IETF, 1999. url:
https://www.rfc-editor.org/rfc/rfc2616 (visited on 09/13/2023).

86

https://doi.org/10.1145/800283.811113
https://doi.org/10.1016/j.jss.2008.06.035
https://doi.org/10.1016/0096-0551(94)90015-9
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://doi.org/10.1007/s42979-020-00140-z
https://en.wikipedia.org/wiki/HATEOAS
https://doi.org/10.1145/255656.255692
https://doi.org/10.1109/2.312032
https://doi.org/10.6138/JIT.2017.18.6.20160118
https://www.rfc-editor.org/rfc/rfc2616

Bibliography

[24] IBM. WS-Security. July 2023. url: https://www.ibm.com/docs/en/app-
connect/11.0.0?topic=security-ws (visited on 09/15/2023).

[25] JavaScript Object Notation (JSON) Patch. Standard RFC 6902. IETF, 2013. url:
https://www.rfc-editor.org/rfc/rfc6902 (visited on 10/28/2023).

[26] Bob Jones. REST Architecture. June 2020. url: https://www.redhat.com/en/
blog/rest-architecture (visited on 09/04/2023).

[27] Evan King et al. “Sasha: Creative Goal-Oriented Reasoning in Smart Homes with
Large Language Models”. In: arXiv:2305.09802 (May 2023). doi: 10 . 48550 /

arXiv.2305.09802. eprint: 2305.09802. (Visited on 11/07/2023).

[28] P.B. Kruchten. “The 4+1 View Model of Architecture”. In: IEEE Software 12.6
(Nov. 1995), pp. 42–50. issn: 1937-4194. doi: 10.1109/52.469759.

[29] Tim Lindholm et al. Java Virtual Machine Specification. Feb. 28, 2013. url:
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html (visited
on 10/26/2023).

[30] Gabriele Lobaccaro, Salvatore Carlucci, and Erica Löfström. “A Review of Systems
and Technologies for Smart Homes and Smart Grids”. In: Energies 9.5 (May 2016),
p. 348. issn: 1996-1073. doi: 10.3390/en9050348. (Visited on 09/28/2023).

[31] Microsoft. RESTful web API design. 2023. url: https://learn.microsoft.
com/en- us/azure/architecture/best- practices/api- design (visited on
06/30/2023).

[32] Michael C Mozer. “The Neural Network House: An Environment that Adapts to
Its Inhabitants”. In: ().

[33] Martin Nally. REST vs. RPC: What Problems Are You Trying to Solve with
Your APIs? Oct. 2018. url: https://cloud.google.com/blog/products/
application-development/rest-vs-rpc-what-problems-are-you-trying-

to-solve-with-your-apis (visited on 06/29/2023).

[34] Martin Nally. gRPC vs REST: Understanding gRPC, OpenAPI and REST and
When to Use Them in API Design. Apr. 2020. url: https://cloud.google.
com/blog/products/api-management/understanding-grpc-openapi-and-

rest-and-when-to-use-them (visited on 06/29/2023).

[35] Javier Palanca, Vicente Julian, and Ana Garćıa-Fornes. “A Goal-Oriented Execu-
tion Module Based on Agents”. In: 2011 44th Hawaii International Conference on
System Sciences. 2011, pp. 1–10. doi: 10.1109/HICSS.2011.14.

[36] Javier Palanca et al. “Designing a Goal-Oriented Smart-Home Environment”. In:
Information Systems Frontiers 20.1 (Feb. 2018), pp. 125–142. issn: 1572-9419. doi:
10.1007/s10796-016-9670-x. (Visited on 08/31/2023).

87

https://www.ibm.com/docs/en/app-connect/11.0.0?topic=security-ws
https://www.ibm.com/docs/en/app-connect/11.0.0?topic=security-ws
https://www.rfc-editor.org/rfc/rfc6902
https://www.redhat.com/en/blog/rest-architecture
https://www.redhat.com/en/blog/rest-architecture
https://doi.org/10.48550/arXiv.2305.09802
https://doi.org/10.48550/arXiv.2305.09802
2305.09802
https://doi.org/10.1109/52.469759
https://docs.oracle.com/javase/specs/jvms/se7/html/index.html
https://doi.org/10.3390/en9050348
https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://cloud.google.com/blog/products/application-development/rest-vs-rpc-what-problems-are-you-trying-to-solve-with-your-apis
https://cloud.google.com/blog/products/api-management/understanding-grpc-openapi-and-rest-and-when-to-use-them
https://cloud.google.com/blog/products/api-management/understanding-grpc-openapi-and-rest-and-when-to-use-them
https://cloud.google.com/blog/products/api-management/understanding-grpc-openapi-and-rest-and-when-to-use-them
https://doi.org/10.1109/HICSS.2011.14
https://doi.org/10.1007/s10796-016-9670-x

Bibliography

[37] JoonSeok Park et al. “CASS: A Context-Aware Simulation System for Smart
Home”. In: 5th ACIS International Conference on Software Engineering Research,
Management & Applications (SERA 2007). Aug. 2007, pp. 461–467. doi: 10.1109/
SERA.2007.60.

[38] Problem Details for HTTP APIs. Standard RFC 7807. IETF, 2016. url: https:
//www.rfc-editor.org/rfc/rfc7807 (visited on 09/22/2023).

[39] Prolog. Standard ISO/IEC 13211-1:1995. ISO (International Organization for Stan-
dardization), 1995. url: https://www.iso.org/standard/21413.html (visited
on 11/20/2023).

[40] Red Hat. REST vs. SOAP. Apr. 2023. url: https://www.redhat.com/en/
topics/integration/whats-the-difference-between-soap-rest (visited on
09/15/2023).

[41] Leonnard Richardson. Act Three: The Maturity Heuristic. Conference Presenta-
tion. Stanford, Jan. 2009. (Visited on 09/13/2023).

[42] Ivan Salvadori and Frank Siqueira. “A Maturity Model for Semantic RESTful
Web APIs”. In: 2015 IEEE International Conference on Web Services. June 2015,
pp. 703–710. doi: 10.1109/ICWS.2015.98.

[43] Lalatendu Satpathy. “Smart housing: technology to aid aging in place-new oppor-
tunities and challenges”. In: (2006).

[44] Scaling and Parallel Processing. url: https://docs.spring.io/spring-batch/
docs/current/reference/html/scalability.html (visited on 11/14/2023).

[45] Service (Spring Framework 6.0.12 API). url: https://docs.spring.io/spring-
framework/docs/current/javadoc-api/org/springframework/stereotype/

Service.html (visited on 09/20/2023).

[46] Simon Brown. The C4 model for visualising software architecture. url: https:
//c4model.com/ (visited on 09/19/2023).

[47] Brijendra Singh and Suresh Prasad Kannojia. “A Review on Software Quality
Models”. In: 2013 International Conference on Communication Systems and Net-
work Technologies. Apr. 2013, pp. 801–806. doi: 10.1109/CSNT.2013.171.

[48] Software engineering - Product quality - Part 1: Quality model. Standard ISO/IEC
9126-1:2001. ISO (International Organization for Standardization), 2001. url:
https://www.iso.org/standard/22749.html (visited on 09/08/2023).

[49] Spring. Spring Web MVC Framework. url: https://docs.spring.io/spring-
framework/docs/3.2.x/spring-framework-reference/html/mvc.html (visited
on 09/18/2023).

[50] Spring Framework Documentation. url: https://docs.spring.io/spring-
framework/reference/index.html (visited on 11/06/2023).

88

https://doi.org/10.1109/SERA.2007.60
https://doi.org/10.1109/SERA.2007.60
https://www.rfc-editor.org/rfc/rfc7807
https://www.rfc-editor.org/rfc/rfc7807
https://www.iso.org/standard/21413.html
https://www.redhat.com/en/topics/integration/whats-the-difference-between-soap-rest
https://www.redhat.com/en/topics/integration/whats-the-difference-between-soap-rest
https://doi.org/10.1109/ICWS.2015.98
https://docs.spring.io/spring-batch/docs/current/reference/html/scalability.html
https://docs.spring.io/spring-batch/docs/current/reference/html/scalability.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Service.html
https://c4model.com/
https://c4model.com/
https://doi.org/10.1109/CSNT.2013.171
https://www.iso.org/standard/22749.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/reference/index.html
https://docs.spring.io/spring-framework/reference/index.html

Bibliography

[51] Rossen Stoyanchev and Juergen Hoeller. ProblemDetail (Spring Framework 6.0.13
API). url: https://docs.spring.io/spring- framework/docs/current/
javadoc- api/org/springframework/http/ProblemDetail.html (visited on
10/28/2023).

[52] Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - Guide to SQuaRE. Standard ISO/IEC/IEEE 25000:2014(en).
ISO (International Organization for Standardization), 2014. url: https://www.
iso . org / obp / ui / en / #iso : std : iso - iec : 25000 : ed - 2 : en (visited on
09/08/2023).

[53] Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality models. Standard ISO/IEC
25010:2011(en). ISO (International Organization for Standardization), 2011. url:
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:25010:ed-1:v1:en

(visited on 09/08/2023).

[54] Systems and software engineering - Vocabulary. Standard ISO/IEC/IEEE 24765:2017(en).
ISO (International Organization for Standardization), 2017. url: https://www.
iso.org/obp/ui/en/#iso:std:iso-iec-ieee:24765:ed-2:v1:en (visited on
09/08/2023).

[55] Uniform Resource Identifier (URI): Generic Syntax. Standard RFC 3986. IETF,
2005. url: https://www.rfc-editor.org/rfc/rfc3986 (visited on 09/13/2023).

[56] Colin C. Venters et al. “Software sustainability: Research and practice from a soft-
ware architecture viewpoint”. In: Journal of Systems and Software 138 (2018),
pp. 174–188. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2017.
12 . 026. url: https : / / www . sciencedirect . com / science / article / pii /

S0164121217303072.

[57] verma anushka. Benefit of using MVC. Apr. 15, 2023. url: https://www.geeksforgeeks.
org/benefit-of-using-mvc/ (visited on 09/19/2023).

[58] VMWare Inc. Spring. url: https://spring.io (visited on 09/19/2023).

[59] VMWare Inc. Why Spring? url: https://spring.io/why-spring (visited on
09/20/2023).

[60] W3C Semantic Web Frequently Asked Questions. 2009. url: https://www.w3.
org/2001/sw/SW-FAQ (visited on 09/13/2023).

[61] World Wide Web Consortium. SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition). Apr. 2007. url: https://www.w3.org/TR/soap12/ (visited on
09/15/2023).

89

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/ProblemDetail.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/ProblemDetail.html
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:25000:ed-2:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:25000:ed-2:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:24765:ed-2:v1:en
https://www.iso.org/obp/ui/en/#iso:std:iso-iec-ieee:24765:ed-2:v1:en
https://www.rfc-editor.org/rfc/rfc3986
https://doi.org/https://doi.org/10.1016/j.jss.2017.12.026
https://doi.org/https://doi.org/10.1016/j.jss.2017.12.026
https://www.sciencedirect.com/science/article/pii/S0164121217303072
https://www.sciencedirect.com/science/article/pii/S0164121217303072
https://www.geeksforgeeks.org/benefit-of-using-mvc/
https://www.geeksforgeeks.org/benefit-of-using-mvc/
https://spring.io
https://spring.io/why-spring
https://www.w3.org/2001/sw/SW-FAQ
https://www.w3.org/2001/sw/SW-FAQ
https://www.w3.org/TR/soap12/

Further Sources

Some figures use images and symbols from third parties which require attribution.
They are listed in the following:

• flatflaticon.com, by SatawatDesign: Desk Lamp
Usage(s): Figure 7.1

• flatflaticon.com, by Handicon: Monitor
Usage(s): Figure 7.1

• flatflaticon.com, by Freepik : Sun
Usage(s): Figure 7.1

91

Bibliography

92

Versicherung an Eides Statt

Ich versichere an Eides statt durch meine untenstehende Unterschrift,

- dass ich die vorliegende Arbeit - mit Ausnahme der Anleitung durch die Betreuer
- selbstständig ohne fremde Hilfe angefertigt habe und

- dass ich alle Stellen, die wörtlich oder annähernd wörtlich aus fremden Quellen
entnommen sind, entsprechend als Zitate gekennzeichnet habe und

- dass ich ausschließlich die angegebenen Quellen (Literatur, Internetseiten, sonstige
Hilfsmittel) verwendet habe und

- dass ich alle entsprechenden Angaben nach bestem Wissen und Gewissen vorge-
nommen habe, dass sie der Wahrheit entsprechen und dass ich nichts verschwiegen
habe.

Mir ist bekannt, dass eine falsche Versicherung an Eides Statt nach §156 und §163 Abs.
1 des Strafgesetzbuches mit Freiheitsstrafe oder Geldstrafe bestraft wird.

Duisburg, 1. Dezember 2023
(Ort, Datum) (Vorname Nachname)

	1 Introduction
	2 System Model
	2.1 Problem Definition
	2.2 Goal
	2.3 Research Questions

	3 Related Work
	3.1 Goal-orientated Smart Homes Systems
	3.2 REST(ful) web API
	3.2.1 Definition
	3.2.2 Maturity Models
	3.2.3 Differences to other web APIs

	4 Background
	4.1 Software Qualities
	4.1.1 ISO/IEC 25010

	4.2 RFC 6902 - JavaScript Object Notation (JSON) Patch
	4.3 RFC 7807 - Problem Details

	5 Solution
	6 Prototype
	6.1 Design
	6.2 Architecture
	6.2.1 Spring
	6.2.2 FooSH Architecture Model
	6.2.3 Components

	6.3 Implementation
	6.3.1 REST API
	6.3.2 Error Handling
	6.3.3 Testing
	6.3.4 Developer Guide

	6.4 Usage

	7 Evaluation
	7.1 Proof of Concept
	7.1.1 Setup
	7.1.2 Acquired Data
	7.1.3 Prediction Model
	7.1.4 Implementation
	7.1.5 Validation & Evaluation

	7.2 Discussion
	7.2.1 Research Questions
	7.2.2 Limitations
	7.2.3 Comparison to Related Work

	8 Conclusion
	8.1 Future Work

	A REST API Endpoints
	B ISO/IEC 25010 Software Quality Descriptions
	Bibliography

