FOOSH

A Framework for outcome-oriented Smart Homes

Master's Thesis Colloquium

Malte Josten Applied Computer Science

What makes up a Smart Home?

- A gateway or hub H
- A set of smart things D = { d₁,...,d_u | u ∈ N } with each smart thing d = ({ a | a ∈ A }, { s | s ∈ S }) ∈ D
- A set of actuators $A = \{ a_1, ..., a_v \mid v \in \mathbb{N} \land a_v \in \mathbb{R} \}$
- A set of sensors $S = \{ s_1, ..., s_w \mid w \in \mathbb{N} \land s_w \in \mathbb{R} \}$
- Some kind of user interface
- A user (and a developer)

Users usually know what they want to do, but they do not know how to do it.

How to deal with and connect to a wide variety of smart home systems?

How to deal with and allow incorporation of different prediction models?

Which software qualities are crucial for developing a sustainable and useful solution? What can be done to accomplish and enforce selected software qualities?

A set of environment variables V = { $v_1,...,v_i \mid i \in \mathbb{N}$ } $v_i \subseteq D, v_i \in V$

A set of prediction models $P = \{ (T, LV, f, g) | LV \subseteq V \}$

A set of prediction models $P = \{ (T, LV, f, g) | LV \subseteq V \}$

- Target space T
- Linked variables LV
- Prediction function f
- Translation function g

$$t \xrightarrow{f} \begin{pmatrix} c_1 \\ \vdots \\ c_j \end{pmatrix} \xrightarrow{g} \begin{pmatrix} i_1 \\ \vdots \\ i_j \end{pmatrix}$$

How to operate FooSH? aka. The 5 Steps to Success!

Step 1: Fetch smart devices

```
POST /api/devices/ HTTP/1.1
Accept: application/json
```

```
"details": {
    "token": "abc123",
    "user": "foo",
    "secret": "bar",
```

Step 2: Define environment variable

POST /api/vars/ HTTP/1.1
Accept: application/json

"name": "brightness"

Step 3: Assign device(s) to variable

POST /api/vars/brightness/devices/ HTTP/1.1
Accept: application/json

```
"deviceIds": [
    "light1",
    "light2"
]
```

Step 4: Link variable with prediction model

```
POST /api/models/my-model/mappings/ HTTP/1.1
Accept: application/json
```

Step 5: Make a prediction

POST /api/vars/brightness HTTP/1.1
Accept: application/json

```
"modelId": "my-model",
"value": 50,
"execute": true
```

Proof of Concept

Results

- Validation by Trial-and-Error
- Prediction Model
 - MAE : 3.195
 - MSE : 29.422
 - MSLE: 0.081

How to deal with and connect to a wide variety of smart home systems?

How to deal with and allow incorporation of different prediction models?

Which software qualities are crucial for developing a sustainable and useful solution? What can be done to accomplish and enforce selected software qualities?

Systems and Software Quality Requirements and Evaluation (SQuaRE)

Product Quality

- Functional Suitability
- Performance Efficiency
- Compatibility
- Usability
- Reliability
- Security
- Maintainability
- Portability

Quality in Use

- Effectiveness
- Efficiency
- Satisfaction
- Freedom of Risk
- Context Coverage

Product Quality

- Functional Suitability
- Performance Efficiency
- Compatibility
- Usability
- Reliability
- Security
- Maintainability
- Portability

Quality in Use

- Effectiveness
- Efficiency
- Satisfaction
- Freedom of Risk
- Context Coverage

Fig. 15. Sasha uses iterative reasoning to generate consistently high-quality action plans that leverage whichever relevant devices are available in a given smart home.


```
"timestamp": 1692343421703,
"value": 53517,
"items": [
         "link": "http://192.168.108.103:8080/rest/items/plug1",
         "state": "ON",
         "editable": true,
         "type": "Switch",
         "name": "plug1",
         "label": "shelly-plug-1",
         "tags": ["Office"],
         "groupNames": ["Office"]
     },
         "link": "http://192.168.108.103:8080/rest/items/foo",
         "groupNames": ["Office"]
     },
```



```
procedure makePrediction(targetValue : v)
    instr ← [ ]
    t \leftarrow time
   if f(t) \leq v then
       instr ← instr + turn light off
    else
       instr \leftarrow instr + turn light on
    end if
```

```
return instr
end procedure
```

Product Quality

- Functional Suitability
 - Fct. Completeness
 - Fct. Correctness
 - Fct. Appropriateness
- Performance Efficiency
 - Time-behavior
 - Resource Utilization
 - Capacity
- Compatibility
 - Co-existence
 - Interoperability
- Usability
 - Appropriateness
 Recognizability
 - Learnability
 - Operability
 - User Error Protection
 - User Interface Aesthetics
 - Accessibility

- Reliability
 - Maturity
 - Availability
 - Fault Tolerance
 - Recoverability
- Security
 - Confidentiality
 - Integrity
 - Non-repudiation
 - Accountability
 - Authenticity
- Maintainability
 - Modularity
 - Reusability
 - Analyzability
 - Modifiability
 - Testability

- Portability
 - Adaptability
 - Installability
 - Replaceability

Quality in Use

- Effectiveness
- Efficiency
- Satisfaction
 - Usefulness
 - o Trust
 - Pleasure
- Freedom of Risk
 - Economic Risk Mitigation
 - Health and Safety Risk Mitigation
 - Env. Risk Mitigation
- Context Coverage
 - Context Completeness
 - Flexibility

Level 2: HTTP Verbs

Level 1: URI (Resources)

Level 0: POX

API Maturity

D4 - S2 - P1

Design: 4 - S2 - P1

D4 - Semantic: 2 - P1

D4 - S2 - Profile: 1

