
FooSH
A Framework for outcome-oriented Smart Homes

Master's Thesis Colloquium

Malte Josten
Applied Computer Science

2

What makes up a Smart Home?

● A gateway or hub H
● A set of smart things D ≔ { d1,...,du | u ∈ ℕ }

with each smart thing d ≔ ({ a | a ∈ A }, { s | s ∈ S }) ∈ D
● A set of actuators A ≔ { a1,...,av | v ∈ ℕ ∧ av ∈ ℝ }
● A set of sensors S ≔ { s1,...,sw | w ∈ ℕ ∧ sw ∈ ℝ }
● Some kind of user interface
● A user (and a developer)

3

4

5

Users usually know what they want to do,
but they do not know how to do it.

6
[1]

7

8

RQ 1
How to deal with and connect to a wide variety of smart home systems?

9

RQ 2
How to deal with and allow incorporation of different prediction models?

10

RQ 3
Which software qualities are crucial for developing a sustainable and

useful solution? What can be done to accomplish and enforce selected
software qualities?

11

12

13

14

A set of environment variables V ≔ { v1,...,vi | i ∈ ℕ }

vi ⊆ D, vi ∈ V

15

A set of prediction models P ≔ { (T, LV, f, g) | LV ⊆ V }

16

A set of prediction models P ≔ { (T, LV, f, g) | LV ⊆ V }

● Target space T
● Linked variables LV
● Prediction function f
● Translation function g

17

18

19

20

21

22

How to operate FooSH?
aka. The 5 Steps to Success!

23

Step 1: Fetch smart devices

POST /api/devices/ HTTP/1.1
Accept: application/json

{
”details”: {

”token”: ”abc123”,
”user”: ”foo”,
”secret”: ”bar”,

}
}

24

Step 2: Define environment variable

POST /api/vars/ HTTP/1.1
Accept: application/json

{
”name”: ”brightness”

}

25

Step 3: Assign device(s) to variable

POST /api/vars/brightness/devices/ HTTP/1.1
Accept: application/json

{
”deviceIds”: [

”light1”,
”light2”

]
}

26

Step 4: Link variable with prediction model

POST /api/models/my-model/mappings/ HTTP/1.1
Accept: application/json

{
”variableId”: ”brightness”,
”mappings”: [

{
”parameter”: ”x1”,
”deviceId”: ”light1”

},
{

”parameter”: ”x2”,
”deviceId”: ”light2”

}
]

}

27

Step 5: Make a prediction

POST /api/vars/brightness HTTP/1.1
Accept: application/json

{
”modelId”: ”my−model”,
”value”: 50,
”execute”: true

}

28

29

Proof of Concept

30

31

32

33

34

Results

- Validation by Trial-and-Error
- Prediction Model

- MAE : 3.195
- MSE : 29.422
- MSLE: 0.081

35

36

RQ 1
How to deal with and connect to a wide variety of smart home systems?

37

38

RQ 2
How to deal with and allow incorporation of different prediction models?

39

40

RQ 3
Which software qualities are crucial for developing a sustainable and

useful solution? What can be done to accomplish and enforce selected
software qualities?

41

ISO/IEC 25010
Systems and Software Quality Requirements and Evaluation (SQuaRE)

42
[5]

ISO/IEC 25010

43

Product Quality
● Functional Suitability
● Performance Efficiency
● Compatibility
● Usability
● Reliability
● Security
● Maintainability
● Portability

Quality in Use
● Effectiveness
● Efficiency
● Satisfaction
● Freedom of Risk
● Context Coverage

ISO/IEC 25010

44

Product Quality
● Functional Suitability
● Performance Efficiency
● Compatibility
● Usability
● Reliability
● Security
● Maintainability
● Portability

Quality in Use
● Effectiveness
● Efficiency
● Satisfaction
● Freedom of Risk
● Context Coverage

45

46

47

48

49

50
[3]

51

?
Sources

https://gist.github.com/MalteJosten/ee569d67a615abc2eeca8efecb1f917a

52

APPENDIX

53

54

55

56

{
"timestamp": 1692343421703,
"value": 53517,
"items": [

{
"link": "http://192.168.108.103:8080/rest/items/plug1 ",
"state": "ON",
"editable": true,
"type": "Switch",
"name": "plug1",
"label": "shelly-plug-1",
"tags": ["Office"],
"groupNames": ["Office"]

 },
 {

"link": "http://192.168.108.103:8080/rest/items/foo ",
...
"groupNames": ["Office"]

},
...

]
}

http://192.168.108.103:8080/rest/items/plug1
http://192.168.108.103:8080/rest/items/foo

57

58

59

procedure makePrediction(targetValue : v)
instr ← []
t ← time

if f(t) ≤ v then
instr ← instr + turn_light_off

else
instr ← instr + turn_light_on

end if

return instr
end procedure

ISO/IEC 25010

60

Product Quality
● Functional Suitability

○ Fct. Completeness
○ Fct. Correctness
○ Fct. Appropriateness

● Performance Efficiency
○ Time-behavior
○ Resource Utilization
○ Capacity

● Compatibility
○ Co-existence
○ Interoperability

● Usability
○ Appropriateness

Recognizability
○ Learnability
○ Operability
○ User Error Protection
○ User Interface Aesthetics
○ Accessibility

● Reliability
○ Maturity
○ Availability
○ Fault Tolerance
○ Recoverability

● Security
○ Confidentiality
○ Integrity
○ Non-repudiation
○ Accountability
○ Authenticity

● Maintainability
○ Modularity
○ Reusability
○ Analyzability
○ Modifiability
○ Testability

● Portability
○ Adaptability
○ Installability
○ Replaceability

ISO/IEC 25010

61

Quality in Use
● Effectiveness
● Efficiency
● Satisfaction

○ Usefulness
○ Trust
○ Pleasure

● Freedom of Risk
○ Economic Risk Mitigation
○ Health and Safety Risk

Mitigation
○ Env. Risk Mitigation

● Context Coverage
○ Context Completeness
○ Flexibility

62
[4]

63
[5]

64

D4 - S2 - P1

65

Design: 4 - S2 - P1

66

D4 - Semantic: 2 - P1

67

D4 - S2 - Profile: 1

