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What makes up a Smart Home?

● A gateway or hub H
● A set of smart things D ≔ { d1,...,du | u ∈ ℕ }

with each smart thing d ≔ ({ a | a ∈ A }, { s | s ∈ S }) ∈ D
● A set of actuators A ≔ { a1,...,av | v ∈ ℕ ∧ av ∈ ℝ }
● A set of sensors S ≔ { s1,...,sw | w ∈ ℕ ∧ sw ∈ ℝ }
● Some kind of user interface
● A user (and a developer)
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Users usually know what they want to do, 
but they do not know how to do it.
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RQ 1
How to deal with and connect to a wide variety of smart home systems?
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RQ 2
How to deal with and allow incorporation of different prediction models?
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RQ 3
Which software qualities are crucial for developing a sustainable and 

useful solution? What can be done to accomplish and enforce selected 
software qualities?
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A set of environment variables V ≔ { v1,...,vi | i ∈ ℕ }

vi ⊆ D, vi ∈ V
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A set of prediction models P ≔ { (T, LV, f, g) | LV ⊆ V }



16

A set of prediction models P ≔ { (T, LV, f, g) | LV ⊆ V }

● Target space T
● Linked variables LV
● Prediction function f
● Translation function g
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How to operate FooSH?
aka. The 5 Steps to Success!
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Step 1: Fetch smart devices

POST /api/devices/ HTTP/1.1
Accept: application/json

{
”details”: {

”token”: ”abc123”,
”user”: ”foo”,
”secret”: ”bar”,

}
}
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Step 2: Define environment variable

POST /api/vars/ HTTP/1.1
Accept: application/json

{
”name”: ”brightness”

}

25



Step 3: Assign device(s) to variable

POST /api/vars/brightness/devices/ HTTP/1.1
Accept: application/json

{
”deviceIds”: [

”light1”,
”light2”

]
}
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Step 4: Link variable with prediction model

POST /api/models/my-model/mappings/ HTTP/1.1
Accept: application/json

{
”variableId”: ”brightness”,
”mappings”: [

{
”parameter”: ”x1”,
”deviceId”: ”light1”

},
{

”parameter”: ”x2”,
”deviceId”: ”light2”

}
]

}
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Step 5: Make a prediction

POST /api/vars/brightness HTTP/1.1
Accept: application/json

{
”modelId”: ”my−model”,
”value”: 50,
”execute”: true

}

28



29

Proof of Concept
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Results

- Validation by Trial-and-Error
- Prediction Model

- MAE  : 3.195
- MSE  : 29.422
- MSLE: 0.081

35



36



RQ 1
How to deal with and connect to a wide variety of smart home systems?
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RQ 2
How to deal with and allow incorporation of different prediction models?
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RQ 3
Which software qualities are crucial for developing a sustainable and 

useful solution? What can be done to accomplish and enforce selected 
software qualities?

41



ISO/IEC 25010
Systems and Software Quality Requirements and Evaluation (SQuaRE)
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ISO/IEC 25010
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Product Quality
● Functional Suitability
● Performance Efficiency
● Compatibility
● Usability
● Reliability
● Security
● Maintainability
● Portability

Quality in Use
● Effectiveness
● Efficiency
● Satisfaction
● Freedom of Risk
● Context Coverage
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?
Sources

https://gist.github.com/MalteJosten/ee569d67a615abc2eeca8efecb1f917a
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APPENDIX
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{
"timestamp":  1692343421703,
"value": 53517,
"items": [

{
"link": "http://192.168.108.103:8080/rest/items/plug1 ",
"state": "ON",
"editable": true,
"type": "Switch",
"name": "plug1",
"label": "shelly-plug-1",
"tags": ["Office"],
"groupNames": ["Office"]

    },
    {

"link": "http://192.168.108.103:8080/rest/items/foo ",
...
"groupNames": ["Office"]

},
...

]
}

http://192.168.108.103:8080/rest/items/plug1
http://192.168.108.103:8080/rest/items/foo
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procedure makePrediction(targetValue : v)
instr ← [ ]
t ← time

if f(t) ≤ v then
instr ← instr + turn_light_off

else
instr ← instr + turn_light_on

end if

return instr
end procedure
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Product Quality
● Functional Suitability

○ Fct. Completeness
○ Fct. Correctness
○ Fct. Appropriateness

● Performance Efficiency
○ Time-behavior
○ Resource Utilization
○ Capacity

● Compatibility
○ Co-existence
○ Interoperability

● Usability
○ Appropriateness 

Recognizability
○ Learnability
○ Operability
○ User Error Protection
○ User Interface Aesthetics
○ Accessibility

● Reliability
○ Maturity
○ Availability
○ Fault Tolerance
○ Recoverability

● Security
○ Confidentiality
○ Integrity
○ Non-repudiation
○ Accountability
○ Authenticity

● Maintainability
○ Modularity
○ Reusability
○ Analyzability
○ Modifiability
○ Testability

● Portability
○ Adaptability
○ Installability
○ Replaceability
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Quality in Use
● Effectiveness
● Efficiency
● Satisfaction

○ Usefulness
○ Trust
○ Pleasure

● Freedom of Risk
○ Economic Risk Mitigation
○ Health and Safety Risk 

Mitigation
○ Env. Risk Mitigation

● Context Coverage
○ Context Completeness
○ Flexibility



62
[4]



63
[5]



64

D4 - S2 - P1
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Design: 4 - S2 - P1
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D4 - Semantic: 2 - P1
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D4 - S2 - Profile: 1


